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Visual Simultaneous Localization and Mapping (VSLAM) is essential for mobile autonomous systems operating in complex dynamic
environments. VSLAM algorithms are computationally intensive and must execute in real-time on resource-constrained embedded
devices. Variations in environmental complexity can lead to longer frame processing times, causing dropped frames, lost localization
information, and degraded accuracy. To address these challenges, we introduce OASIS, a novel adaptive approximation method that
dynamically reduces input frame areas based on realtime visual importance. Unlike traditional optimizations that require adjusting
internal SLAM parameters, OASIS selectively minimizes computation by adaptively filtering less critical image regions, significantly
reducing computational load. Evaluations on the EuRoC MAV dataset demonstrate that our approach balances accuracy and system
predictability, achieving up to a 71.8% reduction in worst-case pose estimation errors. OASIS offers a significant advancement in
reliable, predictable, and energy-efficient SLAM tailored for mobile autonomous robotic applications.
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1 Introduction

Autonomous cyber-physical systems (A-CPS) execute complex software pipelines on resource-constrained devices,
for applications that interact with the physical world without human intervention. A-CPS must collect and process
sensory information in order to understand and navigate the environment. Visual-inertial simultaneous localization and
mapping (SLAM) is an essential task for A-CPS. State-of-the-art systems such as ORBSLAM3 [4] have demonstrated that
robust, realtime localization and mapping are achievable without external infrastructure. This capability is particularly
vital for small-scale embedded platforms, where weight, power, and computational resources are at a premium, making
expensive sensors like LiDAR impractical.

Modern research has focuses on adapting SLAM algorithms to operate under the constraints of micro-scale platforms.
For instance, micro aerial vehicles (MAVs) have successfully executed visual-inertial SLAM onboard by leveraging
lightweight cameras and optimized algorithms designed for low-power processors [7, 14]. Fig 1 illustrates how integrating
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Fig. 1. Illustration of a worst-case scenario in autonomous trajectory planning. The figure compares two route plans: one based on
standard SLAM, and the other using SLAM enhanced with OASIS. Dark arrows show velocity vectors, while curved lines represent
the planned trajectories. The orange route, from the OASIS-enhanced SLAM, shows a 70% improvement in worst-case estimation
accuracy. When both routes are applied to the true position (shown as dotted lines), the standard SLAM route indicates a potential
collision with nearby obstacles.

visual and inertial sensor data in SLAM not only enhances route planning accuracy, but also mitigates collision risks
in a MAV scenario. These approaches exploit commodity sensor technology to achieve realtime performance while
keeping costs and payload weights minimal, which is essential for autonomous missions in inaccessible or hazardous
environments [4, 18]. Similarly, compact ground robots have been equipped with embedded visual SLAM systems
that utilize algorithmic simplifications to perform robust localization on limited computational hardware [9]. In the
underwater domain, research on micro autonomous underwater vehicles (𝜇AUVs) has shown that alternative sensing
strategies (e.g., acoustic or electromagnetic localization) can be integrated with visual and inertial data to enable SLAM
in challenging, low-visibility conditions [5]. These works underscore a common theme: by balancing sensor choice
and algorithmic efficiency, it is possible to overcome the inherent limitations of small, low-power platforms (Fig 2).
Despite these advances, the implementation of real-time SLAM on embedded platforms continues to present formidable
challenges. Key issues include limited computational capacity, energy budget, system predictability and robustness. In
this work, we define robustness as the system’s capability to consistently maintain a stable mean Absolute Trajectory
Error (ATE) despite variability and uncertainty in environmental conditions, computational loads, or sensor inputs. A
robust systemmaintains a consistently lowmean ATE, indicating stable performance across typical operating conditions.
Further, for this work we define predictability explicitly as the system’s ability to minimize the maximum observed ATE
(Max ATE), ensuring that worst-case errors remain bounded and manageable. Predictability, measured via Max ATE or
worst case ATE, directly supports reliable route planning and safe autonomous operation, as systems can confidently
account for and mitigate potential worst-case localization errors.

1.1 Motivation and Problem Statement

A-CPS provide clear advantages: they can operate in environments too hazardous or remote for direct human presence,
and they can do so persistently without fatigue. A-CPS applications rely on accurate realtime SLAM to provide
environmental understanding. ORBSLAM3 is a state-of-the-art visual-inertial SLAM application that offers the accuracy
and robustness needed for such missions [4]. However, deploying ORBSLAM3 on autonomous devices in practice faces
serious challenges, primarily stemming from real time and embedded constraints [20].

In this work, we address performance degradation experienced by realtime SLAM executing on resource-constrained
autonomous devices. Unlike standard desktop or lab settings, an embedded autonomous device must perform localization
Manuscript submitted to ACM
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Fig. 2. Top: Example of a Micro Aerial Vehicle (MAV), a Compact Ground Robot (CGR), and Micro Autonomous Underwater Vehicle
(𝜇AUV). Each of these robots integrates core sensor suites—cameras, IMUs, and other sensors for very different mission environments.
The table highlights key differences in weight and power usage, with examples based on real-world systems: DJI Mavic Mini (MAV),
iRobot’s J7 Roomba (CGR), and General Dynamics Bluefin SandShark (𝜇AUV).
Bottom: A detailed block diagram of a ORBSLAM3 based perception pipeline with OASIS augmenting the processing of cells in the
ORB Featurizer of the Tracking Process. OASIS provides the signal to process a specific cell of the image pyramid through maskin.
OASIS recieves timestamp information from the Tracking Map update phase and from the SLAM setting of the entire pipeline.

and mapping within strict timing and hardware limitations. In particular, we identify two compounding issues that can
drastically affect SLAM performance on an autonomous device, in addition to timing and hardware limitations:

• Realtime Responsiveness: SLAM pipelines are soft realtime systems – they do not hard-fail if a deadline is
missed, but the consequences of lag are severe. Studies have shown that if frames are not processed as fast as
they arrive, the system exhibits significant localization drift [20]. Another issue lag may cause is tracking loss,
which triggers a costly recovery procedure (relocalization) that pauses map expansion [20]. Both can lead to a
collision due to planning or other processes relying on inaccurate or inconsistent localization.
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• Worst-Case Performance:Deadline misses have an outsized affect on worst-case performance. Any information
extracted from these dropped or skipped frames yields a dramatic improvement in worst-case performance.
Having a localization and map that is consistent is critical for route or mission planning processes in the
perception pipeline [16].

ORBSLAM3 deployed on an embedded system must cope with tradeoffs: the need for high-performance vision
processing, and the reality of limited onboard computing capability. This paper tackles this tradeoff by systematically
analyzing ORBSLAM3’s behavior under realtime embedded conditions and quantifying the tradeoffs between frame
rate, computation, and accuracy. We specifically investigate how frame deadline misses and dropped frames affect
localization and mapping error in worst-case scenarios, and we highlight techniques to improve the realtime robustness
and predictability of SLAM on devices with limited computational capabilities.

By explicitly understanding and addressing the challenges of realtime responsiveness, computational constraints,
robustness, and predictability, our objective is to facilitate fully autonomous systems that reliably execute missions
in demanding operational scenarios. In particular, we aim to mitigate the adverse effects of localization drift, pose
estimation errors, and unpredictable worst-case performance—issues that currently hinder the deployment of state-of-
the-art Visual-Inertial SLAM on embedded autonomous platforms. Overcoming these barriers is crucial for enabling
robust autonomous capabilities, such as precision infrastructure inspection, accurate environmental monitoring, and
effective search-and-rescue operations, with Visual-Inertial SLAM serving as the reliable foundation of the perception
pipeline.

1.2 Contributions of This Work

This paper introduces OASIS, a novel optimized adaptive approximation method specifically tailored for ORBSLAM3 in
embedded realtime environments. Our primary contributions are:

• Addressing the constraints of resource-limited embedded processors, we propose Region-Specific Approximation
via masking. This strategy prioritizes the processing of stable, centrally located features critical for robust
keyframe selection and map consistency. Our approach improves the efficiency of the system while maintaining
base SLAM accuracy (mean ATE).

• We propose a fully online, runtime adaptive masking strategy that selectively processes only the most informative
regions of each input frame based on the current computational budget and timing constraints. As a result, the
mechanism prevents frame dropouts and maintains consistent tracking performance (low max ATE).

• We implement and instrument experiments using ORBSLAM3, the EuRoC MAV dataset, and a representative
embedded platform that show our method method reduces worst-case Absolute Trajectory Error (ATE) by 71.8%
and, in several scenarios, also improves the mean ATE.

2 Background and Related Works

Simultaneous Localization and Mapping (SLAM) is the process of constructing a map of an unknown environment
while concurrently estimating an agent’s position within that environment. SLAM systems typically integrate data
from sensors such as LiDAR, cameras, and Inertial Measurement Units (IMUs) to collect environmental information. A
crucial step in this process is featurization: the extraction of distinctive features from raw sensor data. Featurization
helps identify and match landmarks in different frames. Popular featurization techniques include Scale-Invariant
Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB), both of which are widely used due to their
Manuscript submitted to ACM
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robustness and efficiency [11, 19]. To manage uncertainties and correctly associate sensor measurements with these
extracted features, sensor fusion methods like the Extended Kalman Filter (EKF) are often employed to remove error,
resulting in visual inertial SLAM. Loop closure detection, which involves recognizing previously visited locations,
combined with graph-based optimization techniques, helps to minimize cumulative errors and refine the final map. Bag
of Words approaches, inspired by natural language processing, further assist in determining if a particular set of feature
descriptors corresponds to the same physical location [6].

2.1 Feature Extraction in SLAM

Feature extraction identifies distinctive landmarks (features) within sensor data, typically images, to facilitate consistent
matching across frames.These extracted features form the basis of pose estimation and mapping in visual SLAM. Popular
visual feature extraction methods include Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF),
and Oriented FAST and Rotated BRIEF (ORB) [12, 19]. A robust feature extractor consistently identifies features despite
changes in viewpoint, illumination, and image scale, enabling accurate localization and motion estimation across frames.

2.2 Keyframe Graph-Based SLAM

Graph-based SLAM represents a significant advance over earlier filter-based methods by selectively processing a subset
of frames known as keyframes. Keyframes are frames that capture significant changes or novel information about
the environment. Instead of incorporating every frame, the SLAM system uses keyframes as nodes within a pose
graph. Edges in this graph represent spatial-temporal constraints (relative pose measurements) between keyframes.
Graph-based optimization algorithms, such as pose graph optimization, incrementally refine the poses of keyframes,
maintaining global consistency in the presence of loop closures and sensor noise. Robust loop closure detection is
especially critical in keyframe-based SLAM to mitigate drift and maintain an accurate and consistent global map over
extended periods of operation.

2.3 ORBSLAM3

ORBSLAM3 is a state-of-the-art implementation of a visual inertial SLAM that integrates ORB feature extraction
with keyframe graph-based optimization. With consistent ORB features, the system efficiently estimates motion and
constructs a graph of keyframes as nodes and their common features as edges [4]. ORBSLAM3’s powerful loop closure
detection based on Bag of Words place recognition mitigates drift accumulation on detection. This makes ORBSLAM3
an optimal choice for applications where precise, realtime mapping and localization are critical.

When applying ORBSLAM3 to EuROC dataset on a desktop class processor, the entire perception pipeline has no
issue completing all tasks prior to new data being fed into the pipeline. In other words, the desktop class processor
performs in a realtime manner by default due to the compute capacity. The same experiment on an embedded processor
results in frame times that quickly exceed the timestamp of the next frame being fed into the pipeline (see Table 2). If
frame processing times were on average the same as the incoming framerate, a queue to control the flow rate would
serve as a potential solution with delay being added into the system. However, in the context of an embedded processor,
this would result in frames being dropped in favor of fresher data. For this work, realtime will be defined as processing
all incoming data prior to the next expected delivery of data. We will further focus on processing of video data, due to
the computational complexity.
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2.4 Related Works

Methodologies to enable embedded devices to utilize State-of-the-art SLAMs typically address computational deadlines
through full-frame adjustments. For example, systems may alter resolution, frame rate [2], limit features per cell
[15], or adjust configurations at runtime (e.g., SlimSLAM [1], DOG-SLAM [10]). These methods perform an offline
design space search, utilizing metrics that extend beyond those available during operational trials (e.g., using signals
such as absolute error to determine which configuration to adjust for optimal performance). They correlate these
findings from offline trials to metrics available online during operation. Although effective, these methods still apply
uniform processing across the entire frame or pipeline, overlooking opportunities for region-specific optimizations
such as adaptive frame processing. This highlights the potential for localized processing strategies better suited to
resource-constrained platforms.

Some approaches leverage expensive hardware accelerators, such as GPUs or dedicated neural processing units, to
achieve realtime performance on embedded systems [13]. However, these accelerators are often shared among multiple
processes such as object detection, labeling, and other tasks within the perception pipeline [17], which can lead to
contention in memory bandwidth or computational resources. Such resource sharing may result in system failures if
not properly managed [8].

Our work addresses these limitations by integrating targeted, region-specific approximation techniques within a
completely online framework, using only resources allocated for mapping and localization in a standard perception
pipeline (CPU only). We only utilize online-only metrics to apply our approximation techniques. Our approach ensures
resource allocation with adherence to strict computational deadlines in deployment of state-of-the-art SLAM on
embedded mobile devices.

Input
Data

Tracking Local
Mapping

Loop Closure
Map Merging

Database

Map/
Trajectory

OASIS

Fig. 3. ORBSLAM3’s overall structure: an Input Data block (Images, IMU) connects to a Tracking block; Tracking feeds into Local
Mapping and OASIS blocks; Local Mapping connects to Loop Closure and Database blocks; Loop Closure links to both the Database
and Map/Trajectory blocks; bidirectional arrows indicate feedback loops. Rounded blocks indicate SLAM processes. Sharp blocks
indicate information external to SLAM operation. Blue block indicates our method.

3 Optimized Adaptive System for Intelligent SLAM (OASIS)

To facilitate computationally bound pose estimation tasks, we propose an Optimized Adaptive System for Intelligent
SLAM (OASIS). OASIS is a dynamic masking strategy, where the computation is bound by real time constraints and the
resulting accuracy based on a processing budget. Our method predicts the available processing time for the next frame
using a moving average of local mapping times and leverages the timing and SLAM settings information to decide
which cells to enable or skip during the feature extraction stage of the perception pipeline. Fig 3 illustrates how the
proposed OASIS module (highlighted in blue) is integrated within the ORB-SLAM3 pipeline.
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Fig. 4. OASIS integration into the ORBSLAM3 pipeline. Timing from tracking map update and SLAM settings is used to generate a
binary signal that enables specific cells for processing in the ORB Featurizer, optimizing feature extraction under computational
constraints. Rounded blocks indicate SLAM processes. Sharp blocks indicate information external to SLAM operation. Blue block
indicates our method.

3.1 Dynamic Masking Budget Estimation

To balance efficiency with pose estimation accuracy, our system dynamically adjusts the mask size by following a
multi-stage process. Both the data produced by the ORB-SLAM3 pipeline and consumed by our budget predictor, as
well as the corresponding control signals transmitted to the ORB-SLAM3 featurizer, are shown in Fig 4. We estimate the
computational budget for the next frame by computing a moving average of number of cells processed per frame:

̄𝐶(𝑛) = 1
𝑛

𝑛
∑
𝑖=1

𝐶(𝑖), (1)

where 𝐶(𝑖) denotes the number of processed cells for frame 𝑖, and 𝑛 is the current frame index. Using the actual
processing time 𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑛) of the most recent frame, we estimate the average time required per cell as:

𝑡𝑐𝑒𝑙𝑙(𝑛) =
𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑛)

̄𝐶(𝑛)
. (2)

Given a total allowed processing time per frame 𝑇𝑓 𝑟𝑎𝑚𝑒, the available computational budget in terms of cell count for
the next frame is calculated as:

𝐵𝑓 𝑟𝑎𝑚𝑒(𝑛 + 1) =
𝑇𝑓 𝑟𝑎𝑚𝑒
𝑡𝑐𝑒𝑙𝑙(𝑛)

. (3)

If operating in stereo mode (two images per frame), this budget is halved to account for increased computational load.

3.1.1 Dynamic Mask Size Determination. The optimal mask size for the next frame is determined by iteratively
evaluating candidate mask sizes. For a given candidate mask size 𝑚, the number of cells covered across all pyramid
levels is computed as:

𝐶(𝑚) =
𝐿−1
∑
𝑙=0

min (𝑁𝑙, 𝑚2) , (4)

where 𝑁𝑙 is the total number of cells at pyramid level 𝑙 and 𝐿 is the number of pyramid levels. Starting from a minimum
mask size (e.g., 𝑚 = 2), the algorithm increases 𝑚 until 𝐶(𝑚) meets or exceeds the frame budget 𝐵𝑓 𝑟𝑎𝑚𝑒. The selected
mask size is then given by:

𝑀(𝑛 + 1) = 𝑚∗, (5)

where 𝑚∗ is the largest candidate for which 𝐶(𝑚∗) < 𝐵𝑓 𝑟𝑎𝑚𝑒 (with the next size, 𝐶(𝑚∗ + 1), exceeding the budget).
Practically, masking algorithm comprises a 13% to 100% approximation of the input original frame depending on the
budget.
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3.2 Masking Candidates

In our system, the dynamic masking strategy not only adapts to the available processing budget but also takes into
account conditions that have been observed to contribute significantly to SLAM error reduction—primarily those
captured in keyframes. Keyframe selection is based on several criteria, and these criteria naturally suggest a masking
strategy that grows from the middle outwards.

Points in the center of an image tend to move less between frames compared to points near the edges. This lower
relative motion leads to more consistent tracking over time. Even if these central points are not ideal in every respect
(for example, they may sometimes correspond to farther objects), their reliability means that processing them still
yields valuable information for SLAM. This concept is closely linked to our keyframe selection and removal criteria, as
described below.

3.2.1 Keyframe Selection. Keyframe insertion is governed by several criteria, including temporal gaps, local mapping
status, and the quality of tracked map points. The stability of central points contributes to these criteria in the following
ways:

• Temporal Stability: Because central points exhibit slower motion, they remain consistently tracked over
multiple frames. This stability helps ensure that the system can accurately compare frames over time, making it
easier to detect when enough new information has been acquired to warrant a new keyframe.

• Reliable Map Point Observations:The persistence of central features—even if not optimal for depth estima-
tion—provides a reliable baseline of map points. This is crucial when evaluating conditions such as the number
of tracked map points in the reference keyframe versus the current frame, a key factor in the decision process
for keyframe creation.

• Robustness in Challenging Conditions: In scenarios where peripheral features may move rapidly or become
occluded, the central features maintain consistency. This consistency allows the system to confidently trigger
keyframe insertion when the overall quality of the tracked features meets the established criteria.

The observation that points in the center of an image tend to exhibit slower relative motion between frames directly
motivates our use of a centralized mask. By concentrating processing on the central region, our system leverages the
reliably tracked features - even when the full frame cannot be processed due to time constraints imposed by complex
scenes. Although this approach may sacrifice peripheral scene perception, it ensures robust SLAM performance by
focusing on the most stable spatial information.

This principle is closely linked to the ORBSLAM3 keyframe selection criteria. The central features, which are
consistently observed, provide a dependable basis for new keyframe insertion. Specifically, the temporal thresholds and
mapping conditions used for keyframe creation are designed to exploit the high reliability of central points, ensuring
robust and continuous map point observations. Although central points are not optimal from a depth perspective, their
consistent tracking facilitates accurate pose estimation.

The redundancy of these stable central features is leveraged during keyframe removal. A keyframe is considered
redundant when a large proportion (e.g., 90%) of its map points are observed in at least three other keyframes. Since
central points are persistently tracked, they are more likely to appear in multiple keyframes, and this redundancy
is exploited to cull non-essential keyframes. The additional choices allow for an better map representation than the
realtime scenario.
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3.2.2 Keyframe Removal. The keyframe culling strategy aims to remove redundant keyframes, those where a high
percentage of the map points (often from the central, stable region) are observed in other keyframes. The reliability of
central points factors into keyframe removal as follows:

• High Redundancy of Central Points: Since central features are tracked reliably across multiple frames, they
tend to be present in several keyframes. If 90% of the map points in a keyframe (primarily central points) are also
observed in at least three other keyframes, that keyframe is deemed redundant.

• Limited Novelty: Keyframes that mostly contain these well-tracked central points might not offer additional
useful information compared to neighboring keyframes. This overlap supports the culling process by identifying
keyframes that can be safely removed without compromising the robustness of the SLAM map.

3.3 Cell Manager Implementation

The cell manager module, implemented in C++ and integrated with ORBSLAM3, leverages the above budget estimation
to control cell processing. Its main functions include:

• Cell Counting and Skipping: As each cell is processed, it is counted. Cells are selectively skipped if they fall
outside the current Field-of-View (FOV) mask or if frame skipping is required.

• Frame Budget Adjustment:Themodule calculates the time per cell using the actual frame time and the average
cells per frame (see Eq. 2). It then computes the frame budget in terms of cell count (Eq. 3). If the actual frame
time exceeds 𝑇𝑓 𝑟𝑎𝑚𝑒, the system compensates by skipping frames and recalculating the budget.

• Iterative Mask Selection: Starting with a 2 × 2 mask, the cell manager iteratively increases the mask size.
For each candidate mask size, it computes the number of cells covered across pyramid levels (Eq. 4). When the
cumulative count exceeds the budget, the previous mask size is selected as the optimal FOV mask (Eq. 5).

Pseudo code for the above procedures is provided as Algorithm 1.

4 Experimental Setup

In this work, we focus on evaluating two critical performance metrics for visual-inertial SLAM systems: the reduction
of worst-case pose estimation errors (maximum error) and the preservation of system responsiveness by consistently
meeting realtime deadlines.

Our evaluation is carried out on the widely recognized EuRoC micro aerial vehicle datasets [3]. In particular, we use
eleven datasets that capture a diverse range of environmental conditions and motion dynamics typical of high-speed pose
estimation tasks. The EuRoC datasets provide synchronized stereo images, inertial measurements, and high-precision
ground truth, making them ideal for testing SLAM algorithms. These datasets are divided into two batches: one recorded
in an industrial machine hall with millimeter accurate position ground truth from a laser tracker; and another captured
in a Vicon equipped room, offering 6D pose ground truth and detailed 3D reconstructions from a laser scanner.

For each dataset, ten independent trials are executed using the default ORBSLAM3 configuration (Table 6) for the
EuRoC datasets. The scenarios are designed to facilitate a comparative analysis between our proposed OASIS method
and a realtime baseline, with a particular emphasis on pose estimation accuracy and system responsiveness. The realtime
baseline is defined as the standard ORBSLAM3 configuration running without any adaptive computational adjustments,
operating strictly under the constraint that frames must be processed within their inter-arrival times. Frames exceeding
this constraint are dropped without processing, ensuring strict adherence to realtime constraints. Furthermore, we
compare our method to state-of-the-art adaptation methodologies.
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We quantify improvements in pose estimation accuracy by measuring both the mean and maximum absolute errors
across all trials. Specifically, the experiments are designed to capture the reduction of worst-case errors by comparing
error metrics between the baseline and OASIS implementations. Additionally, we track the system’s responsiveness by
monitoring adaptive adjustments in mask sizes, which dynamically balance computational efficiency with tracking
accuracy, and tracking processing time of the perception pipeline processes.

4.0.1 Baseline Performance under Unconstrained Computation. To establish an understanding of impact in the absence
of computational constraints, all experiments are repeated on an Intel i7-6950X host system to replicate the computing
environment originally employed by the authors of ORB-SLAM3 [4]. Detailed specifications for both systems used for
evaluation are provided in Table 1.

4.0.2 Impact Analysis of Varying Mask Sizes. In addition, we conduct systematic experiments to characterize how
SLAM performance is influenced by variations in mask size. These evaluations involve running the SLAM pipeline
across the entire dataset under a range of fixed mask sizes. This investigation supports analysis of the accuracy and
computational efficiency trade offs inherent in dynamic mask sizing decisions.

4.0.3 Comparative Evaluation against Existing Adaptive Methods. Beyond assessing performance relative to a standard
realtime baseline (i.e., ORB-SLAM3 with default parameters while considering deadlines), our method is benchmarked
against established adaptive SLAM techniques and results from the non-adapative fixed mask trials:

• PID SLAM [15]: An adaptive method employing a modified Proportional-Integral-Derivative (PID) controller,
dynamically adjusting the number of extracted features based on observed pose variations.

• 𝜔 SLAM [2]: A method adaptively performing frame skipping, driven by pose, both rotation and translation
changes.

• Fixed Mask Size (Non-adaptive Baseline): A control approach maintaining a constant mask size throughout
all experimental trials.

4.0.4 Isolated Evaluation of Dynamic Budget Estimation under Computational Load. To evaluate the efficacy of our
dynamic budget estimation strategy, we perform an isolation experiment with controlled computational stress. Periodic
load was artificially imposed on each processor core using the stress-ng utility, configured to induce a computational
load at a consistent 10% duty cycle for a period of 10 seconds. Three distinct configurations are compared under these
conditions:

(1) ORB-SLAM3 Default Configuration Operates without explicit consideration of computational constraints or
deadlines.

(2) ORB-SLAM3 with Realtime ConstraintsThis is the realtime baseline discussed prior.
(3) OASIS (Dynamic Masking with Budget Estimation) Our dynamic budget estimation to adapt mask sizes in

realtime, explicitly managing computational resources in the presence of periodic induced compute contention.

All experiments are conducted on NVIDIA Jetson Orin NX development kit and an Intel i7-6950X desktop computer.
The Nvidia Jetson is representative of hardware that could be used in mobile and autonomous systems. The desktop
computer is representative of a host system the authors of ORBSLAM3 used to evaluate their SLAM implementation [4].

The software environment is built upon ORBSLAM3 [4], augmented with an adaptive mask sizing mechanism
(OASIS). ORBSLAM3 only takes advantage of vectorized commands offered by the CPU, through OpenCV. In other
words, ORBSLAM3 is run in its default CPU-only configuration, no enhancements are done to offload to GPU. The open
Manuscript submitted to ACM
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Specification Details
Jetson Orin NX 16GB Developer Kit

CPU 8-core Arm Cortex-A78AE
Memory 16 GB 128-bit LPDDR5
Power Limit 25W

Host Machine
CPU 10-core Intel Core i7-6950X
Memory 64 GB 256-bit DDR4
Power Limit 140W

Table 1. Hardware Specifications for Jetson and Host Machine Used in Experiments

source implementation C/C++ leverages multi-threaded processing to concurrently handle feature extraction and pose
estimation, eigen for matrix operations, and g2o for graph optimization.

5 Results & Discussion

Table 2 provides an aggregated comparison of error metrics between the realtime baseline and the OASIS method,
averaged over all datasets. Our method demonstrates a significant reduction in both average maximum and average
mean absolute errors, with the maximum error reduced by 62.1% and the mean error by 30.8%. These improvements
validate our approach’s ability to drastically mitigate worst-case errors while maintaining stable overall performance,
crucial for realtime embedded applications. Table 2 details the performance on individual datasets. Notably, while the
mean absolute error remains largely consistent, dramatic improvements in maximum error (e.g., MH03 exhibits a drop
from 1.50386 m to 0.12712 m) confirm that our approach primarily mitigates outlier error cases. This effect is essential
in applications where sporadic large errors can have severe consequences.

Jetson Orin NX 16GB Developer Kit

Dataset Realtime Baseline OASIS Mean ATE (m) Max ATE (m) Improvement (%)
Frames Dropped (%) FPS Mask (Mean ± Std) Dropped (%) Realtime OASIS Realtime OASIS Mean ATE Max ATE

MH01 3682 943.1 (25.61%) 15.83 12.23 ± 4.51 0.0 (0.00%) 0.06805 0.07001 0.27469 0.18119 -2.9% 34.0%
MH02 3040 848.9 (27.92%) 15.36 14.37 ± 5.38 0.0 (0.00%) 0.07195 0.04817 0.33743 0.13826 33.0% 59.0%
MH03 2700 52.3 (1.94%) 19.70 18.64 ± 4.37 0.0 (0.00%) 0.07155 0.04998 1.53252 0.12712 30.1% 91.7%
MH04 2033 147.5 (7.26%) 18.79 18.35 ± 4.34 0.0 (0.00%) 0.07345 0.06078 0.50904 0.20357 17.3% 60.0%
MH05 2273 113.2 (4.98%) 19.17 19.29 ± 3.94 0.0 (0.00%) 0.10554 0.05956 0.25416 0.15856 43.6% 37.6%
V101 2912 236.1 (8.11%) 18.67 18.51 ± 4.37 0.0 (0.00%) 0.05487 0.02746 0.44819 0.06578 49.9% 85.3%
V102 1710 328.6 (19.22%) 16.77 16.69 ± 4.61 0.0 (0.00%) 0.06395 0.05821 0.14220 0.12282 9.0% 13.6%
V103 2149 174.9 (8.14%) 18.61 18.96 ± 4.02 0.0 (0.00%) 0.10260 0.04890 0.84995 0.12019 52.3% 85.9%
V201 2280 207.0 (9.08%) 18.56 14.00 ± 4.80 0.0 (0.00%) 0.22014 0.05833 5.13288 0.10164 73.5% 98.0%
V202 2348 178.2 (7.59%) 18.78 15.59 ± 4.95 0.0 (0.00%) 0.06498 0.05642 0.39721 0.12036 13.2% 69.7%
V203 1922 119.3 (6.21%) 18.88 19.46 ± 3.77 0.0 (0.00%) 0.07924 0.06357 0.33233 0.17238 19.8% 48.1%
Average – 304.5 (11.5%) 18.10 16.92 ± 4.46 0.0 (0.00%) 0.08876 0.05467 0.92824 0.13744 30.8% 62.1%

Table 2. Comprehensive comparison of Realtime Baseline and OASIS-enhanced ORBSLAM3 on EuRoC MAV datasets (10 trials each).
The table combines dropped frame statistics, adaptive mask sizes, and key accuracy metrics (Mean and Max ATE). Improvement
percentages indicate accuracy gains achieved by OASIS compared to the realtime baseline on Jetson hardware. Bold highlights
superior values.

Table 3 highlights our method’s ability to maintain performance with no computation constraint. While some datasets
appear to have large percentage differences, these differences are only a few centimeters. For example, V102 exhibits a
drop from 0.05901m to 0.06152m, a difference of 2.5cm, which appears as a -35% difference, but this is insignificant.
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In addition, the mask size analysis confirms consistency in our adaptive strategy, with an average mask size of 22,
indicating frequent use of the entire frame.

Intel Host Machine (i7-6950X, 64GB RAM)

Dataset Realtime Baseline OASIS Mean ATE (m) Max ATE (m) Improvement (%)
Frames Dropped (%) FPS Mask (Mean ± Std) Dropped (%) Realtime OASIS Realtime OASIS Mean ATE Max ATE

MH01 3682 4.1 (0.11%) 19.98 21.99 ± 0.25 0.0 (0.00%) 0.05775 0.06016 0.14362 0.14650 -4.2% -2.0%
MH02 3040 0.8 (0.03%) 19.99 22.00 ± 0.16 0.0 (0.00%) 0.04760 0.04070 0.13850 0.11136 14.5% 19.6%
MH03 2700 0.5 (0.02%) 20.00 22.00 ± 0.18 0.0 (0.00%) 0.04775 0.04858 0.12137 0.12186 -1.7% -0.4%
MH04 2033 0.6 (0.03%) 19.99 22.00 ± 0.25 0.0 (0.00%) 0.05831 0.05647 0.21220 0.20627 3.2% 2.8%
MH05 2273 1.7 (0.07%) 19.98 21.99 ± 0.26 0.0 (0.00%) 0.06022 0.06296 0.15516 0.16656 -4.6% -7.3%
V101 2912 0.0 (0.00%) 20.00 22.00 ± 0.15 0.0 (0.00%) 0.02942 0.02635 0.07487 0.06689 10.4% 10.7%
V102 1710 0.0 (0.00%) 20.00 22.00 ± 0.00 0.0 (0.00%) 0.05901 0.06152 0.09623 0.13031 -4.3% -35.4%
V103 2149 0.0 (0.00%) 20.00 22.00 ± 0.00 0.0 (0.00%) 0.04947 0.04598 0.12213 0.10709 7.1% 12.3%
V201 2280 0.0 (0.00%) 20.00 22.00 ± 0.00 0.0 (0.00%) 0.06680 0.06534 0.10536 0.10806 2.2% -2.6%
V202 2348 0.0 (0.00%) 20.00 22.00 ± 0.00 0.0 (0.00%) 0.05461 0.05616 0.12008 0.11814 -2.8% 1.6%
V203 1922 0.0 (0.00%) 20.00 22.00 ± 0.00 0.0 (0.00%) 0.06940 0.06778 0.23502 0.15970 2.3% 32.0%
Average – 0.7 (0.0%) 20.00 22.00 ± 0.11 0.0 (0.00%) 0.05458 0.05382 0.13860 0.13116 2.0% 2.8%

Table 3. Comparison of Realtime Baseline (deadlines) and OASIS on EuRoC MAV datasets running on Intel based Host Computer.
Each configuration sampled 10 trials each. Bold values denote better performance.

Table 4 compares trajectory accuracy on the Jetson Orin NX across 3 different methods: PID, 𝜔 SLAM adaptations,
and our proposed OASIS method. Each are evaluated alongside two fixed masks (4 × 4 and 6 × 6). Mean and maximum
absolute translational error (ATE) are reported for the EuRoC MAV sequences.

Results show that OASIS achieves the lowest errors overall when realtime constraints are present: ATEmean = 0.054m
and ATEmax = 0.137m.

In contrast, enforcing realtime execution with PID and 𝜔 controllers yields larger error errors ( ATEmax = 0.771m
and 0.688m, respectively). And although fixed masks produce decent errors, (0.413 m for 4 × 4, 0.176 m for 6 × 6), our
method demonstrates additional possible reduction in error.

These results indicate that spatially adapting the feature mask is an effective use of limited computation compared to
changing frame rate or number of features extracted.

Jetson Orin NX 16GB Developer Kit

Dataset PID Realtime PID 𝜔 Realtime 𝜔 Fixed Mask 4x4 Fixed Mask 6x6 OASIS
Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

MH01 0.06193 0.15124 0.05580 0.22561 0.06121 0.14756 0.06893 0.19881 0.08646 0.19617 0.07071 0.17034 0.07001 0.18119
MH02 0.04124 0.10936 0.05345 0.18994 0.04174 0.11118 0.04654 0.18109 0.07912 0.50470 0.04637 0.14912 0.04817 0.13826
MH03 0.04776 0.12344 0.06769 0.90827 0.04655 0.11926 0.07157 1.47305 0.06321 0.14696 0.05001 0.12843 0.04998 0.12712
MH04 0.06180 0.21851 0.07906 0.68295 0.05398 0.22250 0.06967 0.66827 0.10116 0.36963 0.07072 0.20209 0.06078 0.20357
MH05 0.06023 0.14615 0.09816 0.26446 0.07123 0.16950 0.09723 0.22950 0.16432 0.39614 0.09982 0.25447 0.05956 0.15856
V101 0.02891 0.06886 0.03684 0.36629 0.02676 0.07098 0.03325 0.20681 0.03152 0.07574 0.02572 0.06246 0.02746 0.06578
V102 0.05920 0.09761 0.05947 0.11463 0.05953 0.09623 0.05952 0.11700 0.06105 0.13819 0.06002 0.11030 0.05821 0.12282
V103 0.04905 0.12569 0.07280 0.92312 0.04909 0.11564 0.11447 0.47894 0.05336 0.20734 0.05116 0.23117 0.04890 0.12019
V201 0.06395 0.11781 0.17931 3.68673 0.06643 0.11122 0.14795 2.84008 0.05513 0.11418 0.05584 0.11149 0.05833 0.10164
V202 0.05468 0.11710 0.06879 0.59796 0.05507 0.11506 0.06419 0.67893 0.05864 0.28833 0.05683 0.13271 0.05642 0.12036
V203 0.06807 0.49457 0.07344 0.51727 0.07169 0.23764 0.09092 0.50070 0.12834 2.10927 0.09207 0.38178 0.06357 0.17238
Average 0.05426 0.16094 0.07680 0.77066 0.05484 0.13789 0.07857 0.68847 0.08021 0.41333 0.06175 0.17585 0.05467 0.13744

Table 4. Mean and maximum absolute translational error (ATE) for the controller variants across EuRoC MAV datasets. Realtime
variants refer to enforcing realtime constraints. Lower values are better; bold highlights the best score per dataset regardless of
realtime constraints. All measurements are done in meters. Each configuration run with 10 independent trials.

Table 5 shows impact on accuracy when subjected to periodic computational loads with a 10% duty–cycle, 10 second
interval load. Without realtime constraints the two platforms perform similarly. The average mean ATE differs by only
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0.7 mm and the average maximum ATE by 5 mm, indicating that hardware alone does not bias accuracy when all
frames are processed to completion.

The enforcement of realtime deadlines affects the two systems very differently. On Intel, the periodic stress increases
the mean ATE by 17% (to 0.0639 m) and the worst-case error by 83 % (to 0.248 m). On Jetson the same deadlines inflate
the mean ATE by 115 % (to 0.116 m) and the maximum ATE by an order of magnitude (to 1.336 m), with the largest
spikes occurring in sequences V103 and V201.

When OASIS is applied, the performance rebounds, the average mean ATE falls to 0.056 m and the maximum ATE to
0.154 m, reductions of 52 % and 89 %, relative to the realtime baseline with periodic stress. OASIS achieves close to ideal
(Data Ready) performance, showing that the per-frame computation budget prediction can adapt to different platforms
and unpredictable and uncontrollable interference.

Dataset Data Ready with Periodic Stress Realtime with Periodic Stress OASIS with Periodic Stress
Intel Jetson Intel Jetson Intel Jetson

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
MH01 0.05820 0.14950 0.05982 0.15285 0.05839 0.15657 0.05572 0.27804 0.06090 0.16455 0.06592 0.17073
MH02 0.04098 0.09811 0.04248 0.10159 0.04353 0.10591 0.05705 0.78745 0.04444 0.11971 0.04715 0.14499
MH03 0.04785 0.12239 0.04775 0.12155 0.04785 0.12090 0.09187 1.04494 0.04738 0.12229 0.04962 0.12498
MH04 0.05768 0.21354 0.05885 0.21290 0.07674 0.97332 0.09286 0.18171 0.06334 0.20355 0.06726 0.21080
MH05 0.06246 0.15796 0.05848 0.14623 0.05375 0.12361 0.11216 0.31176 0.07311 0.18701 0.06780 0.17571
V101 0.02782 0.06754 0.02761 0.06914 0.02795 0.08503 0.03578 0.10612 0.02673 0.06731 0.02699 0.06554
V102 0.05923 0.10827 0.05881 0.10015 0.05674 0.09492 0.05887 0.11145 0.06000 0.10632 0.05937 0.11455
V103 0.04853 0.11535 0.04953 0.12442 0.15723 0.59109 0.17527 1.43372 0.06002 0.18909 0.05001 0.12309
V201 0.06605 0.10776 0.06483 0.10922 0.05722 0.10928 0.43918 9.90185 0.05707 0.10655 0.05820 0.10533
V202 0.05539 0.11692 0.05520 0.13055 0.05669 0.11944 0.06510 0.21835 0.05630 0.13906 0.05580 0.12957
V203 0.07608 0.23701 0.06911 0.16952 0.06641 0.24901 0.08951 0.32356 0.11471 0.29116 0.07152 0.32726
Average 0.05457 0.13585 0.05386 0.13074 0.06386 0.24810 0.11576 1.33627 0.06036 0.15424 0.05633 0.15387

Table 5. Mean and maximum absolute trajectory error (ATE) for Intel and Jetson under random periodic stress. Each run-type is
executed on both systems; lower values are better. Periodic stress of full compute load was produced at a 10% duty cycle over 10
second period. All measurements are in meters.

5.1 Quantitative Analysis

The following figures illustrate key aspects of the OASIS method:
Figure 5 clearly indicates that OASIS reduces sporadic high-error instances, validating the effectiveness of our

dynamic runtime approximation strategy, which selectively processes visual data based on realtime computational
availability. Due to early dropped frames due to the deadline constraint, the baseline error is significantly higher than
OASIS. ORBSLAM3 is effectively unable to remove the error accumulated and is always dealing with stale data due to
further dropped frames, resulting in significant mean error. Significant max error is observed; which can lead to critical
failure if route planning and navigation assume only mean error for obstacle avoidance.

Figure 6 highlights the key innovation of our approach - the adaptive adjustment of mask sizes. By dynamically
modulating the processing load, the system maintains computational efficiency without sacrificing pose estimation
accuracy. Due to no frames being dropped in the experimental data, we must use the mask size changes as a proxy to
understand the limits of OASIS.

Figure 7 illustrates that while smaller masks lead to improved processing speed, an overly aggressive reduction in
mask size can compromise worst-case performance, emphasizing the need for a balanced approach. This hints at a
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Fig. 5. A representative trial over dataset MH01 to illustrate OASIS impact. The x-axis represents the frame timestamp, and the
y-axis shows the relative pose error (RPE) magnitude (in meters). This plot demonstrates that the OASIS method consistently reduces
high-error instances encountered in the when deadlines are considered, yielding a more stable and predictable error profile due to
enhanced localization from approximated frames.

possible failure mode of OASIS. If the scene forces OASIS to on average select a mask size of 8𝑥8, a large max ATE will
be generated. This behavior appears across the rest of the datasets, see Fig 9 for Machine Hall samples. However, the
dataset do not approach this failure point, as shown in Table 2. To better understand this condition, we look at error
changes across mask sizes.

Figure 8 confirms that the average tracking performance is stable across a range of mask sizes with a statistical
sampling of 10 trials per mask size, reinforcing that the OASIS method is especially effective in mitigating extreme
error events rather than altering general behavior or mean behavior of the SLAM. The results generalize across the rest
of the datasets (see Fig 10 for results of the Machine Hall Room sets).

5.2 Discussion

The results presented above yield several important insights and highlight the key contributions of this work:

(1) Dynamic Runtime Approximation: The OASIS approach operates fully online by dynamically adjusting
the mask size based on realtime computational metrics. This enables the system to flexibly allocate processing
resources in embedded environments, where computational budgets may fluctuate. The evidence from Fig 6
and Fig 5 supports the effectiveness of this strategy in maintaining robust tracking performance under diverse
conditions.

(2) Significant Reduction in Worst-Case Errors: The most striking improvement is observed in the reduction of
maximum absolute errors (up to 71.9%, as shown in Table 2). This reduction is critical for applications requiring
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Fig. 6. Left: Adaptive mask sizing chosen by OASIS over a single complete trial to illustrate OASIS masking. The x-axis denotes
the frame timestamp of the dataset MH01, while the y-axis represents the dynamically chosen mask size by OASIS. This figure
demonstrates how the algorithm leverages realtime tracking performance to predict the computational budget for upcoming frames
and optimizing the mask size selection given the budget. Right: Same result as above; zoomed in to show temporal detail between
frames. OASIS is switching between mask sizes to deal with scene complexity and a fixed computational budget.

high reliability, as it demonstrates that our method can effectively curtail catastrophic error instances while
preserving overall system accuracy.

5.3 Interpretation of Results

The data reveals a clear trade-off between computational efficiency and pose estimation accuracy. The dynamic
adjustment of the spatial mask size enables the system to capitalize on available computational resources (Table 4). The
dynamic budget estimator handles a trade off of cell processing time and trajectory error suggests that our system can
tolerate potential error spikes in real time, seen in Table 5.

The stability of the mean error across various datasets (Table 2) and when removing computation constraints (Table 3)
suggests the integration of OASIS does not compromise baseline performance or mean ATE significantly of the SLAM
algorithm. And in the presence of computational constraints, OASIS can produce a significant improvement in worst
case ATE.

5.4 Limitations and Overhead Analysis

Our approach assumes temporal continuity between consecutive frames; this naturally introduces risks associated with
abrupt scene changes. To handle these, we presume that the next frame beyond the scene change is also an abrupt
change. This results in a very conservative mask size due to the rolling average’s effect on mask selection. This falls
back to the core principal of extraction of even some data every frame is better than no data due to deadlines being
exceeded. However, this may not be the optimal choice in all scenarios. Though the adaptive logic introduces a modest
computational overhead at the end of each frame, our results confirm that gains in error reduction and robustness
far outweigh these costs. The time complexity of calculating optimal mask size or application of cell computation is
significantly less than a single pass through the tracking process of ORBSLAM3, and any impact is accounted for when
budgeting the following frame.
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Fig. 7. Effect of mask size on maximum absolute error for dataset MH01 over various mask sizes, 10 trials for each mask size, while
enforcing deadlines. The x-axis represents various mask sizes (e.g., 8x8, 16x16), and the y-axis indicates the maximum absolute
error (in meters). The plot reveals that reducing the mask size below approximately 8x8 significantly increases the worst-case error,
demonstrating a clear trade-off between computational efficiency and accuracy.

6 Future Work and Improvements

The proposed OASIS method shows promising results; however, there are several avenues for future research. One key
area is enhancing the approximation method. While our approach currently emphasizes a centralized mask based on
the reliable tracking of central points, this assumption may not always hold or may not be optimal. Future work could
investigate adaptive strategies that dynamically determine the optimal region for feature extraction on a per-frame
basis, possibly incorporating context-aware or learning-based techniques to better identify regions of interest when the
center is not the most informative. For example, using velocity as a means to prioritize central cells at high speeds, and
edges at low speeds.

Another important direction is extending the method to other SLAM frameworks. Our current implementation
requires direct access to the feature extraction code in ORBSLAM3, but adapting OASIS to work with other pipelines
could broaden its applicability. This would involve tailoring the dynamic masking and budget estimation processes
to different featurizers and SLAM architectures, ensuring compatibility and maintaining performance across various
systems. Fig 10 shows that the baseline or mean performance was changed very little; the open question is whether this
technique holds for other SLAM implementations.

Real-world application testing and scalability also warrant further investigation. The current evaluation, based on
the EuRoC datasets, reflects indoor environments. Future studies should examine how the method performs in outdoor
and large-scale scenarios with varying lighting and environmental conditions, assessing its robustness and practical
Manuscript submitted to ACM



OASIS: Optimized Adaptive System for Intelligent SLAM 17

Fig. 8. Impact of mask size on mean absolute error for dataset MH01. The x-axis denotes mask sizes, and the y-axis shows the
mean absolute error. The mean error remains relatively robust to variations in mask size, indicating that our adaptive approach
predominantly targets outlier error cases without significantly affecting the overall tracking performance.

utility beyond indoor settings. In addition, mask maps (such as Fig 6) may serve as a proxy for segment difficultly, in
terms of computation.

To enhance realtime performance, computational offloading through CUDA/GPU or dedicated hardware accelerators
should be explored. Offloading computationally intensive operations, such as feature creation and matching, could
significantly reduce processing times and enable the handling of higher-resolution images and more complex scenes
without compromising system responsiveness.

Finally, an interesting avenue for improvement is the development of a hybrid framework that combines online
processing with offline refinement. By integrating a fallback offline module that periodically reprocesses data to refine
the map and correct accumulated drift, the system could benefit from the immediate responsiveness of online methods
while achieving higher overall accuracy through offline optimization.

7 Conclusion

In this paper, we introduced OASIS, a dynamic adaptive approximation framework specifically developed to enhance
realtime responsiveness and accuracy in embedded SLAM systems, particularly ORBSLAM3 deployed on resource-
constrained platforms. By adaptively reducing computational load through intelligent masking of input frames, OASIS
addresses the significant challenges posed by limited computation resources and stringent timing requirements preva-
lent in embedded autonomous systems. Our extensive evaluations indicate that adaptive runtime approximations
substantially improve worst-case localization performance, highlighting the potential of online adaptive methods
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in managing the inherent trade-offs between accuracy and computational efficiency. These contributions provide a
pathway toward more reliable, predictable, and efficient autonomous navigation for embedded robotics in general.
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8 Appendix

Table 6. Default Configuration of ORBSLAM3 or EuRoC MAV Dataset

Parameter Value Description
Camera Model PinHole Uses the pinhole camera model

for projection.
Image Resolution & FPS 752 × 480, 20 Hz, RGB Defines the image dimensions,

frame rate, and color ordering.
Stereo Threshold Depth 60.0 Depth threshold used to distin-

guish close and far features in
stereo matching.

Stereo Transformation 4×4 matrix Transformation from Camera1
to Camera2 (see YAML for full
matrix details).

IMU-to-Camera Transforma-
tion

4×4 matrix Transformation from the IMU
(body frame) to Camera1 (see
YAML for full matrix details).

IMU Noise Parameters Gyro: 1.7×10−4, Acc: 2.0×10−3 Noise densities for gyroscope
and accelerometer measure-
ments.

IMU Bias Walk Gyro: 1.9393 × 10−5, Acc: 3.0 ×
10−3

Random walk (bias diffusion)
parameters for the IMU.

IMU Frequency 200 Hz Sampling rate of the inertial
measurement unit.

ORB Features 1200 Number of ORB features ex-
tracted per image.

ORB Scale Factor & Levels Scale Factor: 1.2, Levels: 8 Defines the scale pyramid for
multi-scale feature extraction.

FASTThresholds Initial: 20, Minimum: 7 Thresholds for the FAST detec-
tor to ensure robust corner de-
tection.
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Fig. 9. Change of Max ATE over mask sizes, 10 trials per mask size. Shows similar behavior across all the datasets tested. Shows
computational tradeoff of using approximation against worst case trajectory error. Transition from low error to high error serves as
the bound on performance improvement with OASIS.
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Fig. 10. Change of Mean ATE over mask sizes, 10 trials per mask size. Shows similar behavior across all datasets tested. OASIS
generally has little impact to average performance.
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Algorithm 1 OASIS: Optimized Adaptive System for Intelligent SLAM

1: Initialize:
2: 𝑇frame ← allowed time per frame (from SLAM config)
3: 𝑚min ← minimum mask size (default to 2)
4: 𝐿 ← number of pyramid levels (from SLAM config)
5: for each new frame 𝑛 do
6: 𝑇actual(𝑛) ← actual frame processing time
7: 𝐶(𝑛) ← number of cells processed in frame 𝑛
8: 𝑐𝑒𝑙𝑙𝑠𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑.append(𝐶(𝑛))
9: ▷ Compute simple moving average of cells
10: ̄𝐶(𝑛) ← 1

𝑛 ∑
𝑛
𝑖=1 𝑐𝑒𝑙𝑙𝑠𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑[𝑖]

11: ▷ Compute available budget for next frame
12: 𝑡cell(𝑛) ←

𝑇actual(𝑛)
̄𝐶(𝑛)

13: 𝐵frame(𝑛 + 1) ← 𝑇frame
𝑡cell(𝑛)

14: if stereo mode is active then
15: 𝐵frame(𝑛 + 1) ← 𝐵frame(𝑛+1)

2
16: end if
17: ▷ Determine optimal mask size based on budget
18: 𝑚 ← 𝑚min
19: while true do
20: 𝐶𝑚 ← 0
21: for 𝑙 = 0 to 𝐿 − 1 do
22: 𝐶𝑚 ← 𝐶𝑚 +min(𝑁𝑙, 𝑚2)
23: end for
24: if 𝐶𝑚 > 𝐵frame(𝑛 + 1) then
25: break
26: end if
27: 𝑚∗ ← 𝑚
28: 𝑚 ← 𝑚 + 1
29: end while
30: 𝑀(𝑛 + 1) ← 𝑚∗ ▷ Optimal mask size for next frame
31: end for
32: Apply Mask During Frame Processing:
33: 𝐹𝑂𝑉mask ← GenerateMask(𝑀(𝑛 + 1))
34: for all cell in image do
35: if cell ∈ 𝐹𝑂𝑉mask then
36: ProcessCell(cell)
37: else
38: SkipCell(cell)
39: end if
40: end for
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