

INTRODUCTION

Motivation: Autonomous cyber-physical systems need **robust** machine perception to **build accurate environmental and self models in real time**.

Perception pipeline: Feature extraction \rightarrow depth estimation \rightarrow sensor fusion \rightarrow online spatial map construction.

SLAM Challenge: **Perceptual errors accumulate**, causing drift between estimated and true pose; unchecked drift risks collisions or system failure.

Key metrics:

- **Robustness**: consistently low mean ATE.
- **Predictability**: bounded max ATE (worst-case error).

Baseline system: **ORB-SLAM3** [1], a state-of-the-art visual inertial SLAM designed for desktop-class hardware.

Our contribution (**OASIS**): Controller that adapts perception online to maintain accuracy under resource limits and dynamic scenes.

Embedded deployment: Integrate **OASIS** with **ORB-SLAM3** on **NVIDIA Jetson Orin NX** (representative end device).

Realtime focus: Respect compute/latency constraints of the embedded hardware and demonstrate improved **robustness** (\uparrow mean ATE) and **predictability** (\uparrow max ATE) on embedded hardware.

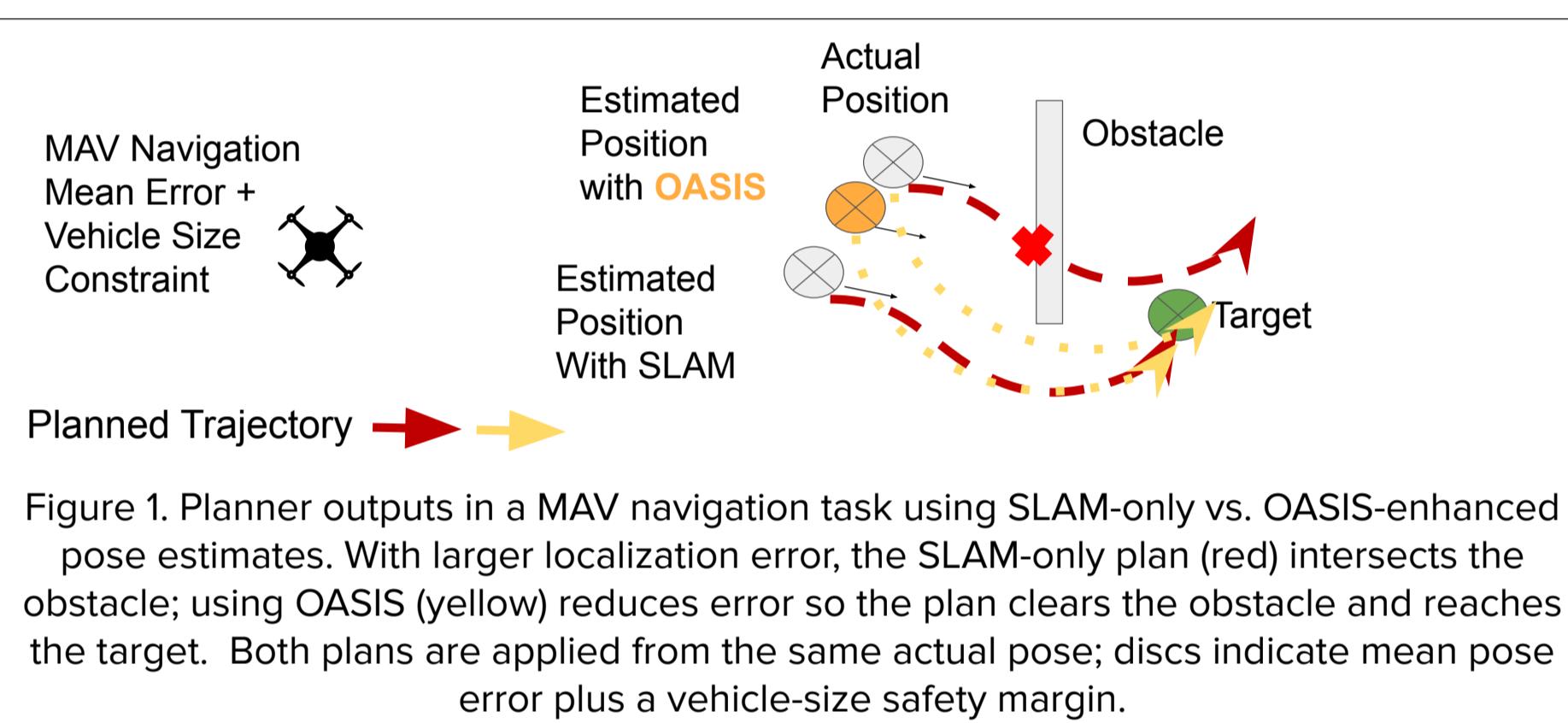


Figure 1. Planner outputs in a MAV navigation task using SLAM-only vs. OASIS-enhanced pose estimates. With larger localization error, the SLAM-only plan (red) intersects the obstacle; using OASIS (yellow) reduces error so the plan clears the obstacle and reaches the target. Both plans are applied from the same actual pose; discs indicate mean pose error plus a vehicle-size safety margin.

METHODS

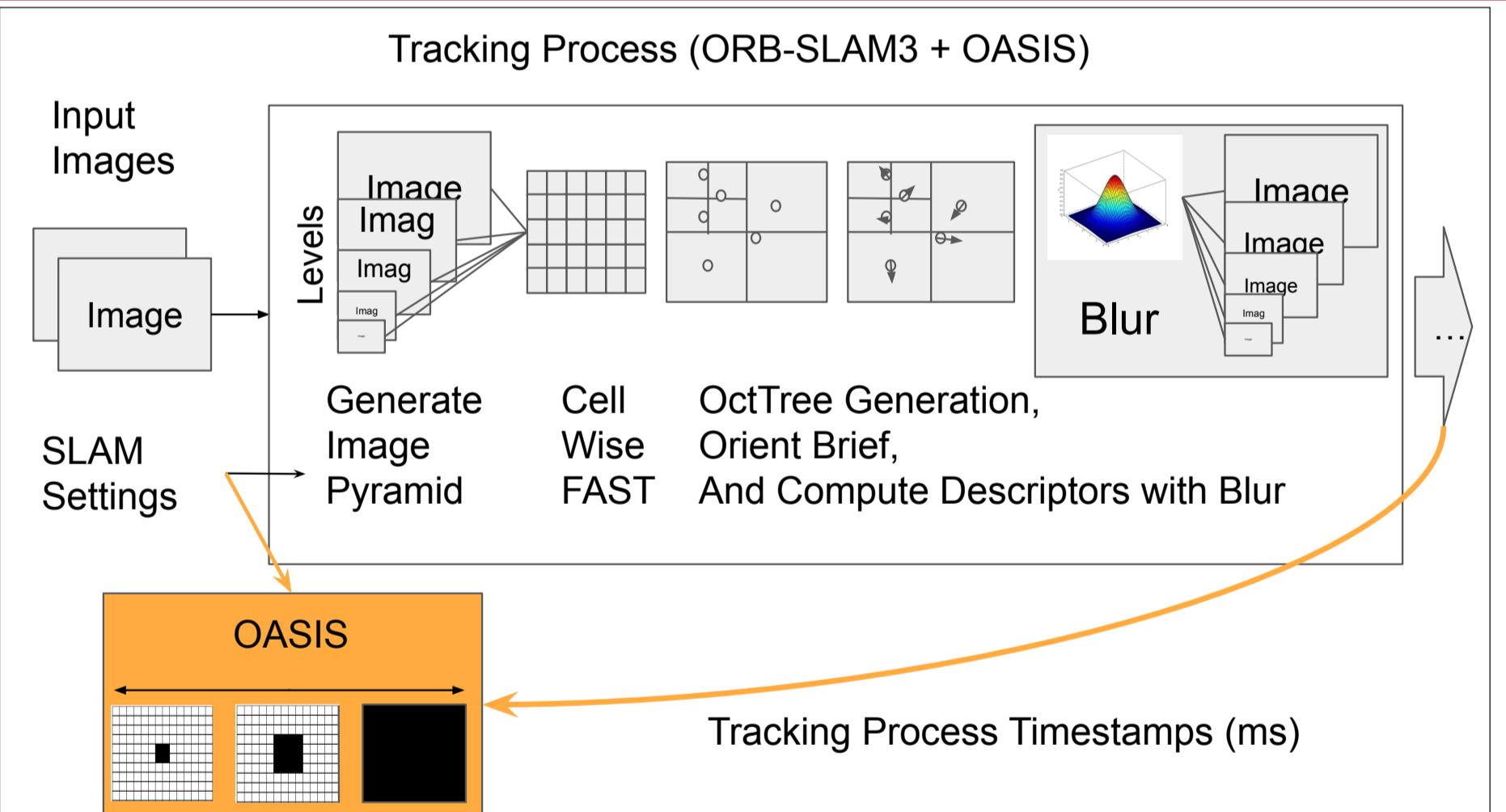


Figure 2. OASIS Block diagram showing SLAM configuration and timestamp inputs and binary outputs onto the tracking process pipeline of ORB-SLAM3 [1]. Yellow indicates additions to the regular ORB-SLAM3 pipeline.

EXPERIMENTAL SETUP

Dataset utilized is the **ETH Zurich EuRoC MAV Dataset** [2]. A summary of the dataset:

- 11 **Indoor** Industrial Scenes
- Camera Calibration and Intrinsics
- 20 FPS, 752 x 480 **Stereo** Images
- 200 Hz **IMU Samples**
- Ground truth measurements (collected externally)

ORB-SLAM3 default configuration and parameters are used for all trials.

Specification	Details
Jetson Orin NX 16GB Developer Kit	
CPU	8-core Arm Cortex-A78AE
Memory	16 GB 128-bit LPDDR5
Power Limit	25W
Host Machine	
CPU	10-core Intel Core i7-6950X
Memory	64 GB 256-bit DDR4
Power Limit	140W

RESULTS

SLAM with OASIS has fewer spikes a overall smoother trace. Under realtime deadlines, OASIS (blue) reduces high-error bursts that dominate the baseline (red) due to frame drops, resulting in a predictable error profile.

Relative Pose Error Over Time - OASIS vs. Realtime Baseline (EuRoC MH01, Jetson Orin NX)

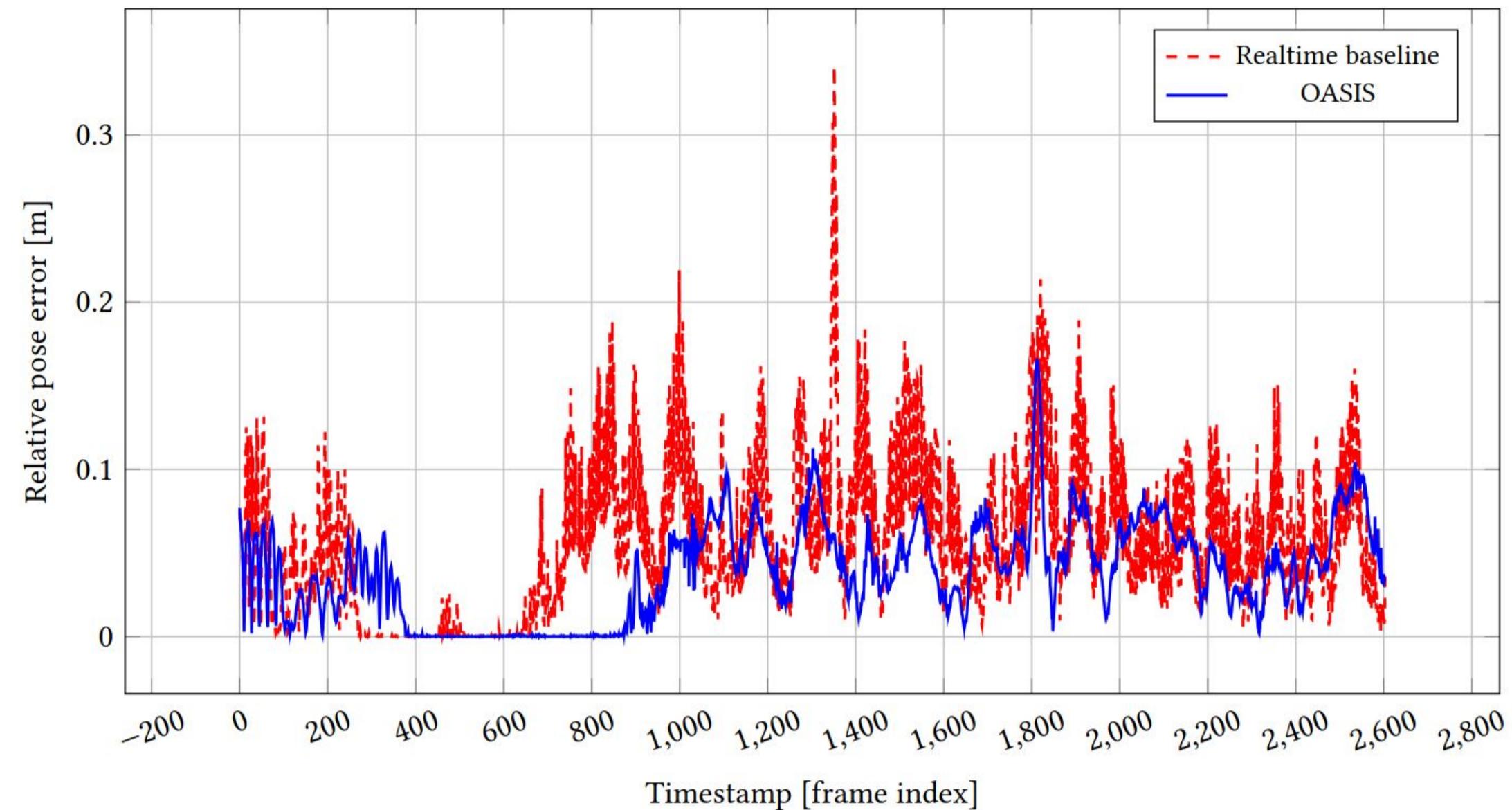


Figure 3. A Trial of EuRoC MH01 running on Nvidia Jetson Orin NX with ORB-SLAM3 (with deadlines), and another with OASIS enabled. Relative Pose Error in meters vs Timestamp of Frame. Red dotted trace indicates the ORB-SLAM3 realtime baseline. Blue solid indicates ORB-SLAM3 realtime baseline with OASIS enabled.

- **Realtime Baseline vs OASIS** — Jetson Orin NX
 - Mean ATE 0.0888 \rightarrow 0.0547 m (**-38.4%**)
 - Max ATE 0.928 \rightarrow 0.137 m (**-85.2%, $\sim 6.75 \times$**)
 - Dropped 11.5% \rightarrow 0% (**baseline ~ 18.1 FPS, OASIS ~ 20 FPS**)
- **Data-ready Baseline vs Realtime OASIS** — Intel Host (i7-6950X)
 - Mean ATE 0.0546 \rightarrow 0.0538 m (**$\sim 1.4\%$**)
 - Max ATE 0.1386 \rightarrow 0.1312 m (**$\sim 5.4\%$**)
 - Dropped **$\sim 0.0\%$ vs 0.0%**
- **Realtime adaptive controllers vs OASIS** — Jetson Orin NX
 - PID-SLAM: mean ATE **-28.8%**, max ATE **-82.2%**
 - ω -SLAM: mean ATE **-30.4%**, max ATE **-80.0%**
- **Data-ready Fixed masks vs Realtime OASIS** — Jetson Orin NX
 - 4x4: mean ATE **-31.8%**, max ATE **-66.7%**
 - 6x6: mean ATE **-11.5%**, max ATE **-21.8%**

CONCLUSIONS

OASIS (ours): Online, adaptive **masking** that funnels compute to the most informative image regions so embedded ORB-SLAM3 **meets realtime deadlines**.

Mechanism: Approximates full-frame content to **reduce per-frame load**—no SLAM reconfiguration required.

Metrics: Mean ATE (robustness) and Max ATE (predictability / worst-case).

Jetson Orin NX results:

- **-38% mean ATE, -85% max ATE, 0% frame drops** under realtime constraints.

Takeaway: OASIS delivers **predictable, realtime SLAM** on embedded hardware **without sacrificing accuracy**.

FUTURE WORK

Smarter, adaptive masking

- Replace a fixed center mask with **frame-adaptive region selection**.
- Use **context-aware / learning cues** (e.g., prioritize center at high speeds; emphasize edges/details at low speeds).

Real-world scale & robustness

- **Validate outdoors** and at larger spatial scales across **varied lighting/conditions**.

Hardware acceleration / Computational offloading

REFERENCES

[1] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M. Montiel, and Juan D. Tardós. 2021. ORB-SLAM3: An Accurate Open-Source Library for Visual, VisualInertial, and Multimap SLAM. *IEEE Transactions on Robotics* 37, 6 (2021), 1874–1890. doi:10.1109/TRO.2021.3075644

[2] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder, Sammy Omari, Markus W Achterlik, and Roland Siegwart. 2016. The EuRoC micro aerial vehicle datasets. *The International Journal of Robotics Research* 35, 10 (2016), 1157–1163. arXiv:https://doi.org/10.1177/0278364915620033 doi:10.1177/0278364915620033