
Motivation: Autonomous cyber-physical systems need robust machine perception 
to build accurate environmental and self models in real time.

Perception pipeline: Feature extraction → depth estimation → sensor fusion → 
online spatial map construction.

SLAM Challenge: Perceptual errors accumulate, causing drift between estimated 
and true pose; unchecked drift risks collisions or system failure.

Key metrics:

● Robustness: consistently low mean ATE.
● Predictability: bounded max ATE (worst-case error).

Baseline system: ORB-SLAM3 [1], a state-of-the-art visual inertial SLAM designed 
for desktop-class hardware.

Our contribution (OASIS): Controller that adapts perception online to maintain 
accuracy under resource limits and dynamic scenes.

Embedded deployment: Integrate OASIS with ORB-SLAM3 on NVIDIA Jetson 
Orin NX (representative end device).

Realtime focus: Respect compute/latency constraints of the embedded hardware 
and demonstrate improved robustness (↓ mean ATE) and predictability (↓ max 
ATE) on embedded hardware.
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SLAM with OASIS has fewer spikes a overall smoother trace. Under realtime deadlines, 
OASIS (blue) reduces high-error bursts that dominate the baseline (red) due to frame drops, 
resulting in a predictable error profile.

OASIS (ours): Online, adaptive masking that funnels compute to the most informative 
image regions so embedded ORB-SLAM3 meets realtime deadlines.

Mechanism: Approximates full-frame content to reduce per-frame load—no SLAM 
reconfiguration required.

Metrics: Mean ATE (robustness) and Max ATE (predictability / worst-case).

Jetson Orin NX results:

● −38% mean ATE, −85% max ATE, 0% frame drops under realtime constraints.

Takeaway: OASIS delivers predictable, realtime SLAM on embedded hardware without 
sacrificing accuracy.

Smarter, adaptive masking

● Replace a fixed center mask with frame-adaptive region selection.
● Use context-aware / learning cues (e.g., prioritize center at high speeds; emphasize 

edges/details at low speeds).

Real-world scale & robustness

● Validate outdoors and at larger spatial scales across varied lighting/conditions.

Hardware acceleration / Computational offloading
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Figure 1. Planner outputs in a MAV navigation task using SLAM-only vs. OASIS-enhanced 
pose estimates. With larger localization error, the SLAM-only plan (red) intersects the 

obstacle; using OASIS (yellow) reduces error so the plan clears the obstacle and reaches 
the target.  Both plans are applied from the same actual pose; discs indicate mean pose 

error plus a vehicle-size safety margin.

Tracking Process (ORB-SLAM3 + OASIS)
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Figure 2. OASIS Block diagram showing SLAM configuration and timestatmp Inputs 
and binary Outputs onto the tracking process pipeline of ORB-SLAM3 [1]. Yellow 

indicates additions to the regular ORB-SLAM3 pipeline.
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Figure 3. A Trial of EuRoC MH01 running on Nvidia Jetson Orin NX with ORB-SLAM3 (with 
deadlines), and another with OASIS enabled. Relative Pose Error in meters vs Timestamp of 
Frame. Red dotted trace indicates the ORB-SLAM3 realtime baseline. Blue solid indicates 

ORB-SLAM3 realtime baseline with OASIS enabled.

Relative Pose Error Over Time - OASIS vs. Realtime Baseline (EuRoC MH01, Jetson Orin NX)

CONCLUSIONS

EXPERIMENTAL SETUP

● Realtime Baseline vs OASIS — Jetson Orin NX
○ Mean ATE 0.0888 → 0.0547 m (−38.4%)
○ Max ATE 0.928 → 0.137 m (−85.2%, ~6.75×)
○ Dropped 11.5% → 0% (baseline ~18.1 FPS, OASIS 20 FPS)

● Data-ready Baseline vs Realtime OASIS — Intel Host (i7-6950X)
○ Mean ATE 0.0546 → 0.0538 m (~−1.4%)
○ Max ATE 0.1386 → 0.1312 m (~−5.4%) 
○ Dropped ~0.0% vs 0.0%

● Realtime adaptive controllers vs OASIS — Jetson Orin NX
○ PID-SLAM: mean ATE −28.8%, max ATE −82.2% 
○ ω-SLAM: mean ATE −30.4%, max ATE −80.0%

● Data-ready Fixed masks vs Realtime OASIS — Jetson Orin NX
○ 4×4: mean ATE −31.8%, max ATE −66.7%
○ 6×6: mean ATE −11.5%, max ATE −21.8%

Dataset utilized is the ETH Zurich EuRoC MAV Dataset [2]. A summary of the 
dataset:

● 11 Indoor Industrial Scenes
● Camera Calibration and Intrinsics
● 20 FPS, 752 x 480 Stereo Images
● 200 Hz IMU Samples
● Ground truth measurements (collected externally)

ORB-SLAM3 default configuration and parameters are used for all trials.


