
SPEED: Scalable and Predictable EnhancEments for
Data Handling in Autonomous Systems

Dongjoo Seo*1, Changhoon Sung*2, Junseok Park3, Ping-Xiang Chen1, Bryan Donyanavard2, Nikil Dutt1
1 University of California, Irvine, 2 San Diego State University, 3 Kookmin University

{dseo3, p.x.chen, dutt}@uci.edu, {csung7167, bdonyanavard}@sdsu.edu, 20191271@kookmin.ac.kr

Abstract—Scalable and predictable disk I/O management is
critical for autonomous applications that must handle realtime
sensor data streams. Existing ROS-based architectures for end-to-
end autonomous compute pipelines suffer from lack of scalability
and performance predictability that can compromise safety. We
present SPEED, an approach leveraging a multi-queue architec-
ture and a context-aware I/O scheduler to achieve scalability and
performance predictability. We demonstrate SPEED’s ability to
reduce single I/O latency in rosbag by 84%, and improve by
over 1.5× the scalability of existing camera sensors. Furthermore,
SPEED’s context-aware I/O scheduler improves the predictability
of multi-task application pipelines by over a 3.08× reduction
in performance standard deviation. Our results demonstrate
significant improvements in I/O management, making SPEED
well suited for the stringent I/O demands of modern end-to-
end autonomous applications that must execute sensor-to-actuator
compute pipelines while meeting realtime performance require-
ments.

I. INTRODUCTION

Autonomous systems, such as autonomous vehicles (AVs),
rely heavily on data from various sensors to make critical
decisions in real-time for safe navigation of physical environ-
ments [1]. The efficient storage and retrieval of sensor data are
crucial to ensure that information from sensors such as LiDAR,
radar, and cameras is available for processing, not only with
minimal delay, but also in a timely manner [1]–[8]. Figure 1
illustrates a cooperative system in an AV environment [1],
where operations such as object detection and path planning
interact with various sensors such as LiDAR, radar, GPS, and
cameras in an end-to-end (sensors-to-actuators) computational
pipeline that must meet timing constraints. I/O performance
is a crucial factor in minimizing the end-to-end delay of the
software pipeline to provide road safety control. All mobile
autonomous systems generally require efficient data collection
and sharing at runtime, e.g., a robot dog [5] or an autonomous
vehicle [2] that uses multiple sensors and subsystems to navi-
gate unfamiliar terrain.

Frameworks such as the Robot Operating System (ROS) are
widely adopted to manage multiple autonomous tasks in com-
plex sensor-driven autonomous systems, including in AVs [7]–
[9]. ROS operates as a middleware layer atop the operating
system (e.g., Linux), relying on OS-level mechanisms for I/O
and scheduling, which can introduce unpredictability. ROS uses
a publish-subscribe architecture that manages communications
to ensure efficient data flow among applications, supporting
multiple data streams through uniquely named topics. Each

Dongjoo Seo and Changhoon Sung are co-first authors.

topic in ROS corresponds to an independent application flow
characterized by its specific inputs and outputs. This model

Object detection

Path Planning

Object tracking

Kalman Filter

Lidar

Radar

GPS

Camera

Operations Store Data Post Operation

Operations Store Data Post Operation

Object detection

Traffic Control

Cooperative Task

Driver Check

deadline

Lidar

Radar

GPS

Camera

Fig. 1: Example cooperative AV system: different operations
(e.g., object detection and path planning) interact with various
sensors in an end-to-end pipeline. The I/O performance plays
a critical role in end-to-end delays.
allows application developers to focus on individual tasks (e.g.,
AV computational pipeline blocks) tailored to each topic. Data
associated with each topic can be archived locally using a
storage engine known as rosbag [10]. The current rosbag, a
vital component within the ROS ecosystem, is designed to
efficiently handle the storage and retrieval of message data.
rosbag operates by subscribing to specific topics and collect-
ing incoming messages, then serializes the messages into a
structured binary data format that, in principle, is portable and
scalable [10].

However, the current rosbag architecture’s single-queue
buffer system introduces significant performance degradation
as the number of sensors and concurrent datastreams grow [3],
limiting scalability to meet the increasing data throughput
demands in modern autonomous systems. In particular, the
current rosbag single-queue architecture poses two challenges:
1) Maintaining performance as number of sensors grows,
since data logging/sharing become bottlenecks, leading to de-
graded performance in storage operations, and 2) Reducing
the standard deviation of end-to-end latency for realtime AV
pipelines, that affects the predictability (i.e., reduced variability)
of realtime sensor data to meet strict timing constraints for
safety-critical applications. Indeed, the timing of data writes to
disk is controlled by the operating system [11], that can result



in unpredictable delays which can compromise consistent and
timely performance paramount for ensuring safety.

These two challenges highlight the pressing need for a more
advanced rosbag I/O framework that can guarantee scalable and
predictable data management in the face of increasing sensor
data inputs for contemporary autonomous systems. Our paper
addresses these limitations through the following contributions:

• We propose SPEED: Scalable and Predictable Enhance-
ments Data Handling for rosbag. SPEED is a multi-queue
architecture that increases the performance and scalability
of rosbag. Our evaluation in emulated sensors for Tesla AV
scenarios [3] show an increase in the number of camera
sensors supported by 1.5×.

• We present a context-aware I/O scheduler for SPEED that
increases predictability by reducing the variability in per-
formance standard deviation with rosbag for autonomous
systems. Our evaluation demonstrates a 3.08× reduction in
performance standard deviation for an autonomous vehicle
application pipeline.

• Our experiments are carried out with an extensive simu-
lated end-to-end autonomous vehicle pipeline using ROS.

II. BACKGROUND AND CHALLENGES

We begin by outlining the operational dynamics of ROS-
integrated applications. Then, we detail the mechanisms by
which data is stored utilizing rosbag [10], highlighting the
specific functionalities and challenges faced by this approach.

Node Rosbag

NodeTopic 1

Topic 2

Topic 3

Fig. 2: Example data flow of multi-node ROS application
storing data in a rosbag

F
il
e
M
et
a
d
a
ta

D
a
ta

C
h
u
n
k

C
h
u
n
k
M
et
a
d
a
ta

In
d
ex

..
.

D
a
ta

M
et
a
d
a
ta

In
fo
.

M
S
G

D
E
F

.bag

Queue Size

Fig. 3: Layout of data file in rosbag 2.0

ROS is based on the core architectural principle of dis-
tributed microservices, where the system is divided into distinct
compute elements known as nodes [9]. These nodes interact
over shared communication channels termed topics. Each node
has the ability to publish messages to a topic, and nodes can
subscribe to topics to receive relevant messages. This decentral-
ized communication model is integral to ROS’s flexibility and
scalability in handling diverse robotic and AV tasks. In rosbag,
the data-writing process begins with nodes publishing serialized

message payloads to topics. rosbag captures these messages
from the ROS network, appending meta-information including
timestamps and topic names, and writes the data sequentially
to a .bag file (see Figure 2). This format was sufficient for
early versions of rosbag. As illustrated in Figure 3, while the
data structure of rosbag can vary between versions, it generally
involves combining the data from multiple randomly-ordered
topics, with each topic containing a series of timestamped
message payloads in a unified file structure. Importantly, as
ROS is a middleware rather than a standalone OS, file I/O
operations in rosbag ultimately rely on underlying OS-level
calls. These calls often involve buffered I/O, which can block
unpredictably and introduce variable delays that undermine
real-time data logging requirements.

To address different operational needs, rosbag offers two pri-
mary storage methodologies. The first method uses a database-
based system, where data is managed through structured
databases such as SQLite [12]. This technique ensures strong
data integrity and supports intricate query capabilities, which
are crucial for thorough analysis and extraction of large
datasets. However, given that end-to-end latency is a critical
factor in autonomous systems, this method is undesirable [12]–
[14]. The second method, exemplified by newer implementa-
tions such as MCAP (Message Capture Format) [15], stores
data directly in the filesystem. This approach is designed for
high-throughput writing and reading, ensuring minimal I/O
completion latency in data handling. MCAP, in particular,
improves the efficiency of data storage and access by leveraging
a format optimized for rapid serialization and deserialization of
ROS messages [10].

While MCAP addresses the latency concerns, ROS work-
loads commonly consist of multi-node applications (e.g., au-
tonomous vehicles that execute multiple pipelined applications
such as object detection, tracking, and planning) and can also
comprise multiple collaborative applications (e.g., cooperative
AVs, smart cities) that share and store data on-device at runtime
[1], [3]–[5]. Such applications require numerous sensors and
datastreams and must meet end-to-end latency constraints for
safety. When these applications include rosbag on each plat-
form to record data for logging, playback, or post-processing,
rosbag poses two challenges: scalability and predictability.

Scalability is a major concern when dealing with the large
volumes of data generated by numerous sensors in autonomous
systems. The current rosbag architecture relies on a single-
queue-based buffer system to handle data input, which becomes
a bottleneck as the number of sensors increases. This bottleneck
leads to increased latency and poorer performance when I/O
operations are integrated into the pipeline, particularly in high-
throughput environments [10]. As autonomous systems con-
tinue to evolve, the need for a more scalable I/O management
system that can efficiently handle multiple concurrent data
streams becomes increasingly evident.

Predictability – manifested by minimizing timing variability
– is another critical issue, especially given the safety-critical
nature of autonomous applications like AVs. The timing of
data writes to the actual disk device in the existing rosbag



system is highly dependent on the buffered I/O mechanisms
of the underlying operating system [11]. This dependency
introduces unpredictability in data storage, as the timing of
when data is written to disk can vary significantly, leading to
potential resource contention when saving data and ultimately
less reliable runtime performance. Furthermore, the timing
variation (via minimizing deviation) of end-to-end performance
is also critical for ensuring autonomous system safety.

Given these two challenges, it is clear that common I/O
engines, especially the current rosbag architecture, are insuf-
ficient for current autonomous systems, specifically suffering
from inefficiencies in terms of scalability and predictability.
We present SPEED: a novel approach that addresses these
limitations by improving the scalability and predictability of
rosbag, better aligning it with the needs of realtime autonomous
systems.

III. SPEED ARCHITECTURE AND SCHEDULER

SPEED consists of a multi-queue architecture and context-
aware I/O scheduler for rosbag file storage.

Topic 1 Topic 2 Topic 3

ROS

rosbag

RAW (MCAP)

Operating System

Queue

(a) Current I/O stack.

Topic 1 Topic 2 Topic 3

ROS

rosbag

Operating System

Throughput

RAW (MCAP)

Writers

Queues

(b) SPEED architecture.

Fig. 4: Existing I/O stack compared to SPEED architecture

A. Multi-Queue Architecture

In the traditional rosbag architecture (Figure 4a), data from
various sensors is processed through a single-queue system,
creating a bottleneck as the number of topics and amount
of data stored increases, increasing end-to-end latency. We
propose the SPEED architecture (Figure 4b), a multi-queue
system that allocates a dedicated queue for each topic, allowing
each sensor’s data to be processed separately in parallel, thereby
mitigating the inherent bottleneck in single-queue systems.
Data from each sensor is dispatched to its respective queue
based on the topic identifier. Queue sizes are determined
based on the expected data size during system initialization.
The SPEED architecture facilitates simultaneous data writing
processes, thereby boosting overall application scalability up to
the maximum capability of the operating system.

SPEED mitigates rosbag buffer overflow that occurs in
single-queue architectures by utilizing asynchronous I/O and

dynamic memory management. In the current rosbag im-
plementation, a swapping buffer, referred to as a cache, is
employed to allow message reception while performing syn-
chronous write operations. Existing synchronous blocking sys-
tem calls ensure data integrity while the kernel completes
the write [16], but they involve a blocking wait until I/O
completion. If data ingestion is faster than synchronous I/O pro-
cessing, this can lead to buffer overflow, resulting in data loss.
SPEED leverages io_uring [17], which enables efficient
non-blocking I/O by queuing and processing asynchronous re-
quests independently. Switching to asynchronous non-blocking
methods can lead to data invalidation if the data is modified or
deallocated before the write request is completed, resulting in
corrupt data being recorded on disk. To avoid this potential data
corruption during non-blocking asynchronous I/O operations,
SPEED dynamically allocates memory and retains it until the
completion event is confirmed via the completion queue event
(CQE). This design reduces rosbag cache overflow significantly
but increases the working set size of the application, as each
asynchronous I/O request requires its own buffer.

Sensor1

Sensor2

Sensor3

Sensor4

EKF

Loc

Planner

ObjDetect

OS Buffer Flushed

20 Time (ms)400

(a) Current I/O writeback scheduling

Sensor1

Sensor2

Sensor3

Sensor4

EKF

Loc

Planner

ObjDetect

20 Time (ms)400

(b) Proposed context-aware I/O scheduling

Fig. 5: Comparison of I/O scheduling for sensor data in AV
examplar

B. Context-Aware I/O Scheduler

In Linux-based operating systems, I/O scheduling is typi-
cally managed through the block layer [18], which handles
buffered writes and coordinates I/O requests to storage devices.
Although effective in conventional computing, this approach
introduces significant predictability challenges in safety-critical
applications such as AVs. Buffered writes introduce unpre-
dictability by delaying data flushes to disk based on oper-
ating system conditions, which may interfere with realtime
requirements in autonomous systems. This unpredictability
leads to resource contention, particularly during processing-
critical moments, which compromises the end-to-end latency



essential for AV operations. Figure 5a illustrates how delayed
writebacks of buffered data can cause predictability issues.
Initially, I/O operations are buffered by the OS, and actual
disk writes occur later when the OS decides to flush the
buffer, potentially holding locks and blocking synchronous
rosbag operations. The inherent latency and nondeterministic
behavior of the traditional block layer exacerbate these issues,
compromising system predictability.

To address these challenges, we introduce a context-aware
I/O scheduler that leverages the end-to-end application cycles
of autonomous systems. As shown in Figure 5b, our hint-
based scheduler optimizes the timing of writeback operations
by using specific hints from the application when it starts and
completes its periodic tasks. By modifying the application to
trigger the scheduler based on regular events, the scheduler
detects cycle completions and triggers a writeback. The trig-
ger mechanism employs a heuristic that balances writeback
with periods of system idleness to minimize interference with
ongoing processing. The heuristic assigns static computation
weights during initialization, considering both the combined
computation weight of each application and the amount of
data accumulated in the buffer, and triggers flushes based on
an empirical value that varies depending on the autonomous
system.

The scheduler flushes buffered data at the ideal time, such as
after the compute-intensive phase of the autonomous pipeline,
enhancing predictability by writing back data when it is least
intrusive. For example, in Figure 5b, when applications and
sensor operations complete every 20 ms, rosbag flushes data
to disk, minimizing the impact on application execution. This
method differs from conventional OS writeback handling [19],
where buffered writes are delayed and batched without con-
sidering the application’s realtime requirements, potentially
causing performance variability.

IV. EVALUATION

A. Environment Setup

CPU AMD Ryzen™ 7 5800X
GPU Nvidia Geforce RTX 3060 12GB

Memory DDR4 64GB
OS Ubuntu 22.04.4

Kernel 6.5.0-45-generic
liburing 2.6
ROS2 Humble Hawksbill

Rosbag2 0.15.10

TABLE I: Environment Specification

Table I outlines our setup specification, where we conducted
our evaluation on a single machine, following a setup com-
parable to Tesla’s autonomous vehicle configuration [3]. Note
that while previous work [10] recorded ROS data to evaluate
the ROS-based storage scenario, it is hard to reproduce OS
behavior (especially the effect of buffered writes from rosbag
on recorded data), hence our current experimental setup.

In ROS2 Humble, the default storage format for rosbag is
MCAP, and both the default rosbag and SPEED use MCAP as
the storage format. However, for simplicity, from this point

onward, we will refer to the rosbag default behavior and
architecture collectively as MCAP when making comparisons
with our proposed approach.

B. Workloads

Name Msg Size (Byte) Msg rate (Hz) Msg Count
Camera 5529600 36 360
Radar 1600 50 500

Main LiDAR 640000 25 250
Secondary LiDAR 160000 25 250

GPS 200 25 250
IMU 400 100 1000

Ultrasonic 150 40 400

TABLE II: Microbenchmark Workloads

Initially, to isolate and evaluate the performance of the
storage engine more accurately for our benchmarks, we bypass
the ROS transport layer based on the Data Distribution Service
(DDS) for microbenchmarks. If the input stream exceeds the
rosbag’s processing speed, the recorder’s cache may over-
flow, causing message drops. Therefore, a high percentage of
recorded messages indicates sufficient performance. We use
bpftrace, a tracing tool based on extended Berkeley Packet
Filter (eBPF) [20], to measure latency in the rosbag and related
kernel subsystems.

Table II details the workloads used in this section. We create
three workloads for evaluation. The first workload is used for
scalability evaluation. We simulate automotive sensors using
the rosbag2 performance benchmarking tool with Tesla HW
3.0 camera specs (1280x960 HDR12 @ 36fps) [3]. Each sensor
node can send messages to multiple topics, and benchmarks are
measured five times and averaged.

Fig. 6: Autonomous Vehicle end-to-end pipelined applications

The second workload is used for variability evaluation.
For variability evaluation in a more realistic environment, we
implement a comprehensive end-to-end autonomous vehicle
workload. Figure 6 shows the workload running on the system
with ROS. We use four different types and frequency of sensors,
which is important for functional work on the autonomous
vehicle scenario with DDS [21]. Due to the overhead of
supporting multiple real cameras, we use images from one real
camera sensor and the remaining camera sensors are emulated
using images from the KITTI dataset [22] time-aligned with
the real camera. While we emulate some sensors to generate
consistent and repeatable workloads, we ensure that the data



rates and message sizes closely match those found in real-world
scenarios.

C. Scalability
We evaluate the SPEED architecture compared to the state-

of-the-art rosbag architecture, MCAP, in three dimensions:
1) single-topic I/O completion latency; 2) single-topic multi-
sensor throughput; and 3) multi-topic multi-sensor throughput.

1) Single ROS Topic I/O Performance: We first analyze the
latency involved in processing messages within the rosbag.
This latency is broken down into three key stages: (1) mes-
sage handling, (2) I/O preprocessing, and (3) performing the
operating system write operation. We execute the workload
using the rosbag2 performance benchmarking tool [23]. The
workload consists of a single-camera node generating images
at 36HZ [3] running for 10 seconds. Each data point in Figure 7
represents the cumulative latency of I/O operation in rosbag.
As shown in Figure 7, MCAP spends the majority of its time
waiting for the system call (syscall) to complete during I/O
operations, making it a significant contributor to the overall
latency. Specifically, a large portion of the total time is spent
in the syscall phase, which creates a bottleneck that slows down
data processing. In contrast, SPEED significantly reduces this
waiting time by handling I/O asynchronously. By moving the
blocking I/O calls out of the critical execution path, SPEED
allows other operations to continue without being delayed by
I/O tasks in rosbag. This asynchronous handling reduces both
I/O preprocessing and syscall latency by 84%, contributing to
an overall reduction of 79% in total latency.

0 200 400 600 800 1,000 1,200

MCAP

SPEED

Sum of I/O latencies (ms)

Msg Handling I/O Preprocess Syscall

Fig. 7: Breakdown of Sum of I/O Latencies in MCAP and
SPEED with Camera Data Saving Workload

6 8 10 12 14
40

60

80

100
18.71%

29.26%

Number of Cameras

R
ec

or
de

d
R

at
e

(%
)

MCAP
SPEED

Fig. 8: Recorded Success Rate by Number of Camera Count

2) Multiple ROS Sensor I/O Scalability: After establishing
that SPEED significantly reduces I/O latency, we now turn to

scalability. We evaluate how well rosbag performs when we
increase the number of camera nodes publishing to the same
topic. Figure 8 depicts the number of cameras on the x-axis,
and the data recorded rate of the number of camera generated
on the y-axis. Figure 8 shows that with 10 cameras, the MCAP
data recorded rate drops to 81% from 100%, while SPEED
maintains a rate over 97% with 12 cameras, approximately
1.5× more sensor capacity. As anticipated, MCAP’s single
queue buffer suffers when multiple concurrent inputs share the
same buffer. Overall, SPEED’s proposed multi-queue archi-
tecture efficiently utilizes the CPU asynchronously, ensuring
that the overall CPU usage remains optimized even under high
sensor load conditions.

0 20 40 60 80 100

SPEED

MCAP

Recorded Success(%)

Fig. 9: Comparison of Data Recorded Success Rates of Multiple
Different Types of Sensors

3) Multiple ROS Topic I/O Scalability: Lastly, we evaluate a
workload involving multiple sensors streaming and saving data
concurrently across several topics without computation appli-
cations. Extending the previous 8-camera benchmark, we add
1 Main LiDAR, 4 Secondary LiDAR, 5 Radar, 1 GPS, 1 IMU,
and 12 Ultrasonic sensors (details in Table II). Sensors of the
same type share the same topic. As shown in Figure 9, MCAP’s
rosbag recording rate drops from 100% to 77.1%, while SPEED
maintains 97.9%, showing almost no performance degradation.

Our evaluation shows that SPEED not only reduces single
I/O submission latency by 84% but also increases system
scalability by 1.5×, enabling the system to handle more sensors
concurrently without performance degradation. This increased
scalability is crucial in autonomous systems where multiple
sensors generate vast amounts of data simultaneously, and
processing delays can impact the system’s overall performance
and safety.

D. Variability

Although we successfully improved the I/O performance and
scalability of rosbag, it is essential to evaluate the variability
of these improvements and their applicability in systems with
DDS and computational workloads. To assess variability, we
conduct two experiments: (1) first we compare the performance
of the context-aware scheduler and MCAP/OS for a simple
two-node application, and (2) then we evaluate the variability
of our context-aware scheduler when applied to a real-world
AV scenario.

1) Variability of I/O Task Completion: To demonstrate the
variability of the existing rosbag’s performance, we implement
a simple two-node application where one is a computation



node and the other is a I/O submission node to rosbag.
Figure 10 demonstrates the variability of CPU-bound task
execution (10ms) over time under different I/O scheduling
strategies (MCAP/OS vs. SPEED+sched). The y-axis represents
the number of CPU tasks completed per time interval(33ms),
highlighting performance consistency. The MCAP/OS (blue
line) shows significant performance variability due to unpre-
dictable I/O submission and writeback operations, leading to
inconsistent CPU availability. In contrast, the SPEED+sched
(orange line) demonstrates less variability, maintaining a stable
task completion rate over time by scheduling I/O during CPU
idle periods. Performance variability, as measured by standard
deviation, is 3.08× higher for MCAP/OS, indicating less pre-
dictable execution.

2) Variability of End-to-End AV pipeline performance:
We construct an end-to-end AV workload that involves the
saving of large amounts of sensor data and the execution of
various application functions [3], [21]. Figure 11 compares
three driving scenes: a 106-second passage through a shaded
commercial alley with pedestrians and bicycles (Scene A), a 48-
second right turn and signal wait on a quiet road with parked
cars (Scene B), and a 66-second drive through a residential area
with parked cars and garbage bins (Scene C). The figure shows
the normalized standard deviation of the end-to-end operation
completion latencies for each scene. MCAP is excluded due
to significant data loss (10-30%), likely caused by its inability
to handle concurrent I/O requests at high number of sensor
loads. In contrast, our SPEED configuration successfully saved
all sensor data without any loss.

Figure 11 demonstrates that context-aware scheduling im-
proves predictability by reducing variability on the standard de-
viation of end-to-end latencies in all three scenarios, compared
to the baseline SPEED configuration. This improvement is pri-
marily due to the context-aware I/O scheduler’s ability to align
I/O with idle CPU periods, minimizing resource contention
between I/O and computation tasks. However, this decrease
in variability does not directly result in overall performance
improvements in the AV pipeline, as seen in Figure 10. A likely
reason for this is that while I/O scheduling enhances reliability,
inconsistencies in the application and network resource usage
persist, limiting overall performance gains. Further optimiza-
tion, particularly in harmonizing I/O scheduling with appli-
cation resource allocation, will be crucial for achieving more
substantial performance improvements in future work.

V. RELATED WORKS

Efficient I/O management is essential for autonomous sys-
tems that handle large volumes of real-time sensor data [1]–
[8]. The ROS framework and its rosbag tool are widely used
but suffer from scalability and predictability limitations due to
its single queue architecture, causing scalability and latency
problems with concurrent sensor streams [18], [24], [25].
Zhang et al. proposed BORA to improve data acquisition by
reorganizing data by topic [10], but focuses on post-processing
rather than realtime I/O management, making it less suitable
for autonomous systems [11].

0 300 600 900 1,200 1,500 1,800

2

3

·105

Elapsed Time(s)

C
PU

Jo
bs

pe
r

In
te

rv
al

MCAP SPEED+sched

Fig. 10: Performance Variability Comparison in Connected I/O
Submission and CPU-Bound Applications Over Time

Scene-A Scene-B Scene-C
0

0.5

1
0.81 0.84 0.87

N
or

m
st

d

SPEED SPEED+sched

Fig. 11: End-to-End Latency Variability Comparison Between
SPEED with or without Context-Aware Scheduling In Three
Different Road Scene Scenario

Jiang [26] introduced a real-time I/O system for many-core
embedded systems, addressing the need for predictable I/O
performance in systems with stringent real-time requirements.
Their work emphasizes the importance of coordinating I/O
operations and prioritizing tasks based on realtime constraints,
which is relevant to autonomous systems. Incorporating real-
time I/O scheduling techniques from Jiang’s research comple-
ments our context-aware I/O scheduler by enhancing timing
predictability and reducing latency variability.

Recent research has also improved I/O performance using
multi-queue architectures [18] and Asynchronous I/O mech-
anisms like io uring [17] effectively reducing bottlenecks in
concurrent data environments. While application-level schedul-
ing has been used to enhance AV system predictability [27]–
[32], I/O scheduling remains less explored [33], [34]. SPEED
builds on these advancements by introducing a multi-queue
architecture and a context-aware I/O scheduler tailored to the
realtime, high-throughput requirements of autonomous systems,
addressing current limitations in handling large amounts of
sensor data.

VI. CONCLUSION

We presented SPEED: a novel I/O management architecture
for autonomous systems, addressing the limitations of the scal-
ability and predictability of rosbag. The SPEED architecture
mitigates single-queue bottlenecks, improving an autonomous
vehicle system’s ability to handle high-throughput sensor in-
puts and reducing I/O latency by 84%. Our empirical results
demonstrate support for 1.5× more sensors while maintaining



a 97% recording success rate. Additionally, by integrating a
context-aware I/O scheduler, we align writeback operations
with application cycles and improve predictability by reducing
the variance in standard deviation of pipelined application per-
formance by 3.08×. These enhancements significantly improve
rosbag’s scalability and predictability, which are critical for
safety and performance in autonomous operations. While our
multi-queue architecture enhances throughput and scalability,
it also poses additional challenges such as increased memory
overhead and scheduling complexity. In future work, we plan
to explore dynamic or adaptive queue allocation strategies
that better balance resource usage and preserve predictable
performance, especially in large-scale, distributed autonomous
environments with numerous sensors. We will also validate our
system under real-world conditions and incorporate advanced
resource management techniques to further improve overall
system performance and predictability.

REFERENCES

[1] Xin Xia, Zonglin Meng, Xu Han, Hanzhao Li, Takahiro Tsukiji, Run-
sheng Xu, Zhaoliang Zheng, and Jiaqi Ma. An automated driving systems
data acquisition and analytics platform. Transportation research part C:
emerging technologies, 151:104–120, 2023.

[2] Yuxin Wang, Yuankai He, Ruijun Wang, and Weisong Shi. Quantitative
analysis of storage requirement for autonomous vehicles. In Proceedings
of the 16th ACM Workshop on Hot Topics in Storage and File Systems,
pages 71–78, 2024.

[3] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon,
Bill McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil
Arora, Atchyuth Gorti, et al. Compute solution for tesla’s full self-driving
computer. IEEE Micro, 40(2):25–35, 2020.

[4] Pratik Vyavahare, Sivaranjani Jayaprakash, and Krishna Bharatia. Con-
struction of urdf model based on open source robot dog using gazebo
and ros. In 2019 Advances in Science and Engineering Technology
International Conferences (ASET), pages 1–5. IEEE, 2019.

[5] Mohsen Sombolestan, Yiyu Chen, and Quan Nguyen. Adaptive force-
based control for legged robots. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 7440–7447.
IEEE, 2021.

[6] Siqi Yi, Stewart Worrall, and Eduardo Nebot. A persistent and context-
aware behavior tree framework for multi sensor localization in au-
tonomous driving. arXiv preprint arXiv:2103.14261, 2021.

[7] Miguel Alcon, Hamid Tabani, Jaume Abella, and Francisco J Cazorla.
Dynamic and execution views to improve validation, testing, and op-
timization of autonomous driving software. Software Quality Journal,
31(2):405–439, 2023.

[8] Hamid Tabani, Roger Pujol, Miguel Alcon, Joan Moya, Jaume Abella,
and Francisco J Cazorla. Adbench: benchmarking autonomous driving
systems. Computing, 104(3):481–502, 2022.

[9] Anis Koubâa et al. Robot Operating System(ROS)., volume 1. Springer,
2017.

[10] Jian Zhang, Tao Xie, Yuzhuo Jing, Yanjie Song, Guanzhou Hu, Si Chen,
and Shu Yin. Bora: a bag optimizer for robotic analysis. In IEEE SC20,
pages 1–15, 2020.

[11] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan
Yu. An ephemeral burst-buffer file system for scientific applications.
In SC’16: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 807–818.
IEEE, 2016.

[12] Alexander J Fiannaca and Justin Huang. Benchmarking of relational and
nosql databases to determine constraints for querying robot execution
logs. Computer Science & Engineering, pages 1–8, 2015.

[13] Young-Kuk Kim and Sang H Son. Predictability and consistency in real-
time database systems. Advances in real-time systems, pages 509–531,
1995.

[14] André Dietrich, Siba Mohammad, Sebastian Zug, and Jörg Kaiser. Ros
meets cassandra: Data management in smart environments with nosql. In
Proc. of the 11th Intl. Baltic Conference (Baltic DB&IS). Citeseer, 2014.

[15] Markus Schratter et al. From simulation to the race track: Development,
testing, and deployment of autonomous racing software. In 2023 IEEE
International Automated Vehicle Validation Conference (IAVVC), 2023.

[16] Young Jin Yu, Dong In Shin, Woong Shin, Nae Young Song, Jae Woo
Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom.
Optimizing the block i/o subsystem for fast storage devices. ACM
Transactions on Computer Systems (TOCS), 32(2):1–48, 2014.

[17] Kanchan Joshi, Anuj Gupta, Javier González, Ankit Kumar, Kr-
ishna Kanth Reddy, Arun George, Simon Lund, and Jens Axboe. {I/O}
passthru: Upstreaming a flexible and efficient {I/O} path in linux. In
22nd USENIX Conference on File and Storage Technologies (FAST 24),
pages 107–121, 2024.

[18] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. Linux
block io: Introducing multi-queue ssd access on multi-core systems. In
Proceedings of the 6th international systems and storage conference,
pages 1–10, 2013.

[19] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Chris-
tian Dietrich. Virtual-memory assisted buffer management. Proceedings
of the ACM on Management of Data, 1(1):1–25, 2023.

[20] Alastair Robertson, Brendan Gregg, et al. bpftrace - high-level tracing
language for linux. https://github.com/bpftrace/bpftrace.

[21] Biswadip Maity, Saehanseul Yi, Dongjoo Seo, Leming Cheng, Sung-Soo
Lim, Jong-Chan Kim, Bryan Donyanavard, and Nikil Dutt. Chauffeur:
Benchmark suite for design and end-to-end analysis of self-driving vehi-
cles on embedded systems. ACM Transactions on Embedded Computing
Systems (TECS), 20(5s):1–22, 2021.

[22] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[23] Michael Orlov et al. Rosbag2 writer benchmarking, 2021.
https://github.com/ros2/rosbag2/tree/humble/rosbag2 performance/
rosbag2 performance benchmarking.

[24] Wonse Jo, Shyam Sundar Kannan, Go-Eum Cha, Ahreum Lee, and
Byung-Cheol Min. Rosbag-based multimodal affective dataset for emo-
tional and cognitive states. In 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 226–233. IEEE, 2020.

[25] Yongbon Koo and SungHoon Kim. Distributed logging system for ros-
based systems. In 2019 IEEE International Conference on Big Data and
Smart Computing (BigComp), pages 1–3. IEEE, 2019.

[26] Zhe Jiang. Real-time i/o system for many-core embedded systems. PhD
thesis, University of York, 2018.

[27] Saehanseul Yi, Tae-Wook Kim, Jong-Chan Kim, and Nikil Dutt. Easyr: E
nergy-efficient a daptive sy stem r econfiguration for dynamic deadlines
in autonomous driving on multicore processors. ACM Transactions on
Embedded Computing Systems, 22(3):1–29, 2023.

[28] Nora Sperling, Alex Bendrick, Dominik Stöhrmann, Rolf Ernst, Bryan
Donyanavard, Florian Maurer, Oliver Lenke, Anmol Surhonne, Andreas
Herkersdorf, Walaa Amer, et al. Information processing factory 2.0-
self-awareness for autonomous collaborative systems. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6. IEEE, 2023.

[29] Haohao Zhang, Kyosuke Watanabe, Kazuhiro Motegi, and Yoichi Shi-
raishi. Ros based framework for autonomous driving of agvs. Proceedings
of the IPS6-04, ICMEMIS, Kiryu, Japan, pages 4–6, 2019.

[30] Yasuhiro Nitta, Sou Tamura, and Hideki Takase. A study on introducing
fpga to ros based autonomous driving system. In 2018 International
Conference on Field-Programmable Technology (FPT), pages 421–424.
IEEE, 2018.

[31] Dongjoo Seo, Biswadip Maity, Ping-Xiang Chen, Dukyoung Yun, Bryan
Donyanavard, and Nikil Dutt. Proswap: Period-aware proactive swapping
to maximize embedded application performance. In 2022 IEEE Interna-
tional Conference on Networking, Architecture and Storage (NAS), pages
1–4. IEEE, 2022.

[32] Dongjoo Seo, Ping-Xiang Chen, Changhoon Sung, Quang Anh Hoang,
Adam Manzanares, and Nikil Dutt. Memscape: Sculpting tiered memory
management for autonomous vehicles. ACM Transactions on Embedded
Computing Systems.

[33] Luca Belluardo, Andrea Stevanato, Daniel Casini, Giorgiomaria Cicero,
Alessandro Biondi, and Giorgio Buttazzo. A multi-domain software
architecture for safe and secure autonomous driving. In 2021 IEEE 27th
international conference on embedded and real-time computing systems
and applications (RTCSA), pages 73–82. IEEE, 2021.

[34] Julius Ziegler and Christoph Stiller. Fast collision checking for intelligent
vehicle motion planning. In 2010 IEEE intelligent vehicles symposium,
pages 518–522. IEEE, 2010.


