

DESIGN, AUTOMATION AND TEST IN EUROPE

THE EUROPEAN EVENT FOR ELECTRONIC SYSTEM DESIGN & TEST

31 MARCH – 2 APRIL 2025 LYON, FRANCE

CENTRE DE CONGRÈS DE LYON

Generating and Predicting Output Perturbations in Image Segmenters

Matthew Bozoukov, Anh Vu Doan, Bryan Donyanavard

The Complete Guide to Object Detection: An Introduction to Detection in 2024 — visionplatform

April 2025

The Complete Guide to Object Detection: An Introduction to Detection in 2024 — visionplatform

How are Satellites Bringing Low-Latency Internet to Autonomous Vehicles? - Zuken US

April 2025

The Complete Guide to Object Detection: An Intro visionplatform

Tesla Autopilot feature was involved in 13 fatal crashes, US regulator says

Federal transportation agency finds Tesla's claims about feature don't match their findings and opens second investigation

✿ A Tesla model 3 drives on autopilot along the 405 highway in Westminster, California, in 2022. Photograph: Mike Blake/Reuters

Latency Internet to Autonomous Vehicles? - Zuken US

TrackEi enables real-time defect detection and predictive maintenance using NVIDIA Jetson edge AI. Credit: APChanel/Shutterstock.

April 2025

Prior Work: Perturbations in object detection

Source: Goodfellow et al., "Explaining and Harnessing Adversarial Examples", ICLR 2015

Prior Work: Perturbations in object detection

Stop sign classified as a 45 mph speed limit!

Source: Eykholt et al., "Robust Physical-World Attacks on Deep Learning Visual Classification", CVPR 2018

Prior Work: Butterfly effect attack

Small perturbations in object detection

Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object Detection Doan et al, DATE 2023

April 2025

Prior Work: Butterfly effect attack

Small perturbations in object detection

Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object Detection Doan et al, DATE 2023

Part 1: Generate problematic perturbation in image segmenters

Part 2: Detect problematic perturbation in image segmenters

 \Rightarrow explicit encoding of the filter mask applied to the image

⇒mutation emulates sensor degradation

⇒explicit encoding of the filter mask applied to the image ⇒mutation emulates sensor degradation

Objective functions:

1. Maximize performance degradation ⇒bounding-box based

⇒explicit encoding of the filter mask applied to the image ⇒mutation emulates sensor degradation

Objective functions:

1. Maximize performance degradation

⇒bounding-box based

1. Minimize perturbation

⇒L2 norm between images

⇒explicit encoding of the filter mask applied to the image⇒mutation emulates sensor degradation

Objective functions:

1. Maximize performance degradation

⇒bounding-box based

1. Minimize perturbation

⇒L2 norm between images

1. Maximize unrelatedness

 \Rightarrow distance from perturbation to object

Experimental setup:

- KITTI dataset
- Transformer-based (DETR) and CNN-based (YOLOv5) object segmentation
- Perturbation injection on opposite half of image

YOLO segmentation with perturbation added

DETR segmentation <u>without</u> perturbation added

DETR segmentation <u>with</u> perturbation added

Part 1: Generate problematic perturbation in image segmenters

Part 2: Detect problematic perturbation in image segmenters

Part 1: Generate problematic perturbation in image segmenters

Part 2: Detect problematic perturbation in image segmenters

Can we predict the degradation these perturbations will cause?

Evaluation: Detecting perturbation

CNN with 3 conv layers and 2 dense layers

Trained with segmentation output of optimal perturbed images

Evaluation: Detecting perturbation

CNN with 3 conv layers and 2 dense layers

Trained with segmentation output of optimal perturbed images

flatten

90% precision, 100% recall

Evaluation: Detecting perturbation

CNN with 3 conv layers and 2 dense layers

Trained with segmentation output of optimal perturbed images

Tiny and seemingly unrelated perturbations can cause misidentification and -segmentation of objects

⇒true positives become false negatives
⇒true negatives become false positives
⇒segmentation mask degradation

Tiny and seemingly unrelated perturbations can cause misidentification and -segmentation of objects

⇒true positives become false negatives
⇒true negatives become false positives
⇒segmentation mask degradation

Errors due to perturbation can be predicted ⇒environmentally sensitive

Can we root cause the errors in the network architecture?

How does this generalize to broader computer vision applications?

Can we generate perturbations in realtime?

Thank You!

April 2025