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TrackEi enables real-time defect detection and predictive maintenance using NVIDIA Jetson edge AI. Credit: APChanel/Shutterstock.
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Source: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, ICLR 2015

Prior Work: Perturbations in object detection
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Stop signclassified as a45 mph speedlimit!
Source: Eykholt et al., “Robust Physical-World Attackson Deep Learning Visual Classification”, CVPR 2018
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Our work: Generating and detecting perturbation

Part 1: Generate problematic perturbation in image segmenters

Part 2: Detect problematic perturbation in image segmenters
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Adversarial perturbation based on multi-objective optimization

Multi-objective optimization-based exploration with NSGA-II and AGE-MOEA
⇒explicit encoding of the filter mask applied to the image
⇒mutation emulates sensor degradation
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Adversarial perturbation based on multi-objective optimization

Objective functions:
1. Maximize performance degradation

⇒bounding-box based1. Minimize perturbation
⇒L2 norm between images1. Maximize unrelatedness

⇒distance from perturbation to object

Multi-objective optimization-based exploration with NSGA-II and AGE-MOEA
⇒explicit encoding of the filter mask applied to the image
⇒mutation emulates sensor degradation
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Experimental setup:
● KITTI dataset
● Transformer-based (DETR) andCNN-based (YOLOv5) objectsegmentation
● Perturbation injection onopposite half of image



YOLO segmentation without perturbation added
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YOLO segmentation with perturbation added



DETR segmentation without perturbation added
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DETR segmentation with perturbation added
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Our work: Generating and detecting perturbation

Part 1: Generate problematic perturbation in image segmenters

Part 2: Detect problematic perturbation in image segmenters
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Our work: Generating and detecting perturbation

Part 1: Generate problematic perturbation in image segmenters

Part 2: Detect problematic perturbation in image segmenters
Can we predict the degradation theseperturbations will cause?
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CNN with 3 conv layers and2 dense layers
Trained with segmentationoutput of optimal perturbedimages
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Tiny and seemingly unrelatedperturbations can cause mis-identification and -segmentation ofobjects
⇒true positives become false negatives
⇒true negatives become false positives
⇒segmentation mask degradation
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Tiny and seemingly unrelatedperturbations can cause mis-identification and -segmentation ofobjects
⇒true positives become false negatives
⇒true negatives become false positives
⇒segmentation mask degradation
Errors due to perturbation can bepredicted
⇒environmentally sensitive
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Future work

Can we root cause the errors in thenetwork architecture?
How does this generalize to broadercomputer vision applications?
Can we generate perturbations inrealtime?
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Thank You!

Question


