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Background: Al in (safety critical) autonomous systems

The Complete Guide to Object Detection: An Introduction to Detection in 2024 —
visionplatform
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Background: Al in (safety critical) autonomous systems

Tesla Autopilot feature was involved in
m 13 fatal crashes, US regulator says
Federal transportation agency finds Tesla’s claims about

feature don't match their findings and opens second
investigation

Latency Internet to Autonomous Vehicles? - Zuken US

The Complete Guide to Object Detection: An Intra

visionplatform O A Tesla model 3 drives on autopilot along the 405 highway in Westminster, California, in 2022.
Photograph: Mike Blake/Reuters
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Background: Al in (safety critical) autonomous systems DA’TE *

ehicles? - Zuken US
The Complete G

visionplatform

TrackEi enables real-time defect detection and predictive maintenance using NVIDIA Jetson edge Al. Credit: APChanel/Shutterstock.
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Prior Work: Perturbations in object detection
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Source: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, ICLR 2015
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Prior Work: Perturbations in object detection

Stop sign
classified as a
45 mph speed

limit!

Source: Eykholt et al., “Robust Physical-World Attacks
on Deep Learning Visual Classification”, CVPR 2018
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Prior Work: Butterfly effect attack
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Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object

Small perturbations in object detection Detection Doan et l, DATE 2023
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Prior Work: Butterfly effect attack

Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object

Small perturbations in object detection Detection Doan et l, DATE 2023
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Our work: Generating and detecting perturbation DA‘T’E}*;
o

Part 1: Generate problematic perturbation in image segmenters
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Adversarial perturbation based on multi-objective optimization DA?TE}*;
o

Multi-objective optimization-based exploration with NSGA-Il and AGE-MOEA
=explicit encoding of the filter mask applied to the image
=mutation emulates sensor degradation
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Adversarial perturbation based on multi-objective optimization DA‘T’E}
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Multi-objective optimization-based exploration with NSGA-Il and AGE-MOEA
=explicit encoding of the filter mask applied to the image
=mutation emulates sensor degradation

Objective functions:

1. Maximize performance degradation
=bounding-box based

April 2025 Donyanavard, SDSU Computer Science 12



> x
»>*
»*

T
*

Adversarial perturbation based on multi-objective optimization DATEf
A x

Multi-objective optimization-based exploration with NSGA-Il and AGE-MOEA
=explicit encoding of the filter mask applied to the image
=mutation emulates sensor degradation

Objective functions:

1. Maximize performance degradation
=bounding-box based

1. Minimize perturbation
=12 norm between images
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Adversarial perturbation based on multi-objective optimization DATEf
A x

Multi-objective optimization-based exploration with NSGA-Il and AGE-MOEA
=explicit encoding of the filter mask applied to the image
=mutation emulates sensor degradation

Objective functions:

1. Maximize performance degradation
=bounding-box based

1. Minimize perturbation
=12 norm between images

1. Maximize unrelatedness
=distance from perturbation to object
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Adversarial perturbation based on multi-objective optimization

Experimental setup:
e KITTI dataset
e Transformer-based (DETR) and

CNN-based (YOLOvV5) object
segmentation

e Perturbation injection on
opposite half of image
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YOLO segmentation without perturbation added DA‘TE
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YOLO segmentation with perturbation added DATE .-
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DETR segmentation without perturbation added DATE i
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DETR segmentation with perturbation added DATE *;
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Our work: Generating and detecting perturbation

Part 2: Detect problematic perturbation in image segmenters
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Our work: Generating and detecting perturbation

Part 2: Detect problematic perturbation in image segmenters

Can we predict the degradation these

perturbations will cause?
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Evaluation: Detecting perturbation
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Evaluation: Detecting perturbation

CNN with 3 conv layers and (|
2 dense layers

Trained with segmentation \ | |
output of optimal perturbed |
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Evaluation: Detecting perturbation

CNN with 3 conv layers and
2 dense layers

Trained with segmentation
output of optimal perturbed
images
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Summary

Tiny and seemingly unrelated
perturbations can cause mis-
identification and -segmentation of
objects

=true positives become false negatives
=true negatives become false positives
=segmentation mask degradation
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Summary

Tiny and seemingly unrelated
perturbations can cause mis-
identification and -segmentation of
objects

=true positives become false negatives
=true negatives become false positives
=segmentation mask degradation

Errors due to perturbation can be
predicted
=environmentally sensitive
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Future work

Can we root cause the errors in the
network architecture?

How does this generalize to broader
computer vision applications?

Can we generate perturbations in
realtime?
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Question

Thank You!
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