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Abstract— Image segmentation applications are a core com-
ponent of safety-critical autonomous software pipelines. Sensor
data input noise can lead to segmentation output corruption
that threatens safety in both DNN- and transformer-based seg-
menters. Previous work has proposed methods for generating
malicious noise to cause DNN- and transformer-based object
detection and classification output corruption. We perform the
same task for image segmentation applications using genetic
algorithms for optimization. We then propose a novel method
to predict whether an input image will yield a corrupted
segmentation output due to noise. We evaluate the optimal
noise generation and corruption prediction on state-of-the-art
image segmenters YOLOv8 and DETR. We observe that we
can (a) cause segmentation output corruption with noise that is
undetectable to the human eye and unrelated to the corrupted
region of the image; and (b) predict output corruption due to
image noise with over 96% accuracy.

I. INTRODUCTION

The ability of an autonomous cyber-physical system to
navigate and interact with its environment hinges on envi-
ronmental understanding. In this context, image-based object
detection and segmentation are common environmental un-
derstanding tasks that enable autonomous systems to operate
safely in the physical world around humans. Autonomous
vehicles must identify objects to navigate traffic, e.g., identify
a stop sign, and locate objects to avoid collision, e.g., identify
and locate a pedestrian. Neural networks such as YOLOv8
[1] and DETR [2] are utilized in real-time object-detection
and image-segmentation applications to achieve such auton-
omy. Ensuring the safe operations of an autonomous system
requires to understand how image input noise and variety
play a role in misidentifying objects. In this paper we address
the safety concerns that come with image segmentation
in autonomous driving and evaluate YOLOv8 and DETR’s
robustness to noise in input images, i.e., perturbation.

We focus on perturbations that achieve a “butterfly effect”
as introduced in [3], and address two questions: (1) can
we generate perturbations in input images that corrupt the
output of state-of-the-art object segmentation neural net-
works? and (2) can we detect such perturbations in input
images? Perturbations should be tiny, i.e., undetectable by
the human eye, and unrelated, i.e., in regions of the image far
from the corrupted object. Success in positively answering
both questions would imply that object segmentation neural
networks cannot prevent malicious attacks solely through
the neural network design, but such attacks can be detected
before the output is corrupted. We use images from the
KITTI dataset [4] to demonstrate and evaluate perturbation.

Fig. 1. The first image has no noise, the image below is optimal noise and
we can see performance degradation in terms of missing objects and lower
confidence scores

Fig. 2. The first image has no noise, the image below is optimal noise
and we can see performance degradation in terms of missing objects only
however there are more missing objects than in the YOLOv8 figure above

To illustrate the “butterfly effects” of perturbations, we
show in Figure 1 two output images from YOLOv8. The top
image shows the output with no input perturbation applied.
The bottom output has an optimally generated perturbation
applied to only the right side of the input image. We observe
that the noise affects the segmenter’s output on the left side
of the image by not being able to detect the object furthest to
the left. Figure 2 shows the same input image segmented with
DETR before (top) and after (bottom) perturbation. We ob-
serve more objects disappearing as compared to YOLOv8’s
detection, indicating that transformer-based networks may be
less resilient to input perturbations. In this work we make



the following novel contributions:
• We evaluate the ability of two different multi-objective

optimization search algorithms to generate perturbations
for object segmentation neural networks. We simul-
taneously solve multiple objective functions to create
optimal perturbations by mapping the generated op-
timal values from each of these functions back to
the corresponding input, creating an optimal range of
perturbation to apply to a given input.

• We generate and evaluate data-driven CNNs to predict
whether an input image, when perturbed, would yield
corrupt output from an image segmentation software.

We format this paper in the following way: Section 2
introduces related work and differentiates our work. Section
3 defines the optimization problem. Section 4 presents the
genetic algorithms and the results of the multi-objective
optimization searches. Section 5 describes the parameters of
our CNN design. Section 6 evaluates the CNN, and Section
7 discusses future work.

II. BACKGROUND AND RELATED WORK

The history of adversarial attacks has many angles to
look at the specific problem, including adding various types
of noise, e.g., Gaussian and salt and pepper noise [5].
Additionally, black-box approaches [6], [7], [8], [9], [10],
and white box attacks [10] have also been studied. The
attack strategy can vary between an optimization-based ap-
proach or a sensitivity analysis. Among approaches similar
to ours, FGSM [10] and Carlini-Wagner-attack [11] can be
highlighted. FGSM is a white-box attack that can directly
access the neural network it affects by modifying the network
gradients in order to maximize the loss of the neural network.
It requires full control and knowledge of how the neural net-
work operates, whereas our approach does not. The Carlini-
Wagner attack utilizes an optimization problem to perform
misclassification. It only targets classification and has two
objectives: minimizing the perturbation, and maximizing its
damage. In contrast, we target in this work segmentation
and add a third objective to this attack by requiring the
perturbation to be unrelated.

Our approach for generating perturbations is a black-
box optimization attack that expands on [3] in two ways:
(1) we address object segmentation instead of detection,
and (2) we evaluate multiple solvers. Object segmentation
networks output image masks, which are more precise than
bounding boxes (the output of object detectors). In addition
to perturbation generation, we identify whether an image has
been corrupted by noise enough so that the segmenter output
will be erroneous.

III. OPTIMIZATION PROBLEM

We formulate our problem as follows: we define an “image
segmentation algorithm” as a function f: RL×W×3 → BN

which takes an image R with length L, width W , and 3
RGB channels, and outputs a vector of prediction masks.
Prediction masks have the form (cl,x,y,l,w), where cl denotes
the class, x and y denote the current coordinates in the

image plane and l and w mean the length and width of
the bounidng box around the image. We define cl to to be
∈ a vector of classes if cl ∈ (1, ..., C, ∗) where we define
∗ to be the class of an unknown prediction. If an image
is designated with the class ∗, then we do not view this
as a valid prediction mask. As a precautionary assumption,
f(img) where img ∈ RLXWX3 is a correct prediction.
We then generate a perturbation δ ∈ RL×W×3 which will
be applied to f(img + δ), which might cause misidentified
objects (masks), disappearing objects, objects that appear out
of nowhere, and shrunken or enlarged image masks. The
optimization consists of three objectives:

1) The goal of the first objective function is to make the
perturbation as small in magnitude as possible, so as
to be undetectable. We measure magnitude in terms of
L2 norm.

2) The second objective function maximizes the corrup-
tion of the image, so that the perturbation does as
much damage as possible. We consider corruption as
disappearing objects or objects appearing that are not
in the original image.

3) The last objective function enforces the unrelated as-
pect of the perturbation, in order to reduce predictabil-
ity of corruption.

A. Unrecognizable Perturbation

Our first objective is to create a perturbation that is
unrecognizable relative to human perception by generating
the smallest possible perturbation. Since the perturbation
is a matrix of values, we can characterize the degree of
perturbation through the L2 norm. In general, a variety of
different norms L0, L1, ..., L∞ can be chosen, but we follow
suit from [3] and choose the L2 norm as it is the Euclidean
norm and we are dealing with a Euclidean space. Specifically,
we are using the L2,1 where we take the Euclidean norms of
the columns then sum all of them together. This is different
from the standard L2 norm of a matrix where we find the
largest singular value of a matrix (square root of the largest
eigenvalue of the matrix, multiplied with its conjugate trans-
pose). The standard L2 norm is computationally intensive,
and unnecessary for our purposes.

B. Performance Degradation

The second objective aims to understand how a specific
perturbation affects the prediction of an image by maximiz-
ing the output distortion. The main focus of this algorithm is
measuring the overlap between the output for one image with
and without perturbation. We use an intersection-over-union
(IOU) algorithm (Algorithm 1) which primarily outlines the
difference in a dataset between the detected image and the ac-
tual image. In our case the algorithm calculates the difference
between the perturbed image detection output and the non-
perturbed image detection output. We first loop through the
unperturbed image masks, B. For each unperturbed image
mask, we loop through all perturbed image masks, B′, and
compare output classes. Once we find the maximum overlap
we add it to the total counter A. After each iteration of



Algorithm 1 Maximize output distortion of image
A← 0
while B is a valid class ∈ f(img) do
A0 ← 0
while B’ is a valid class in the perturbed image do

if B == B’ then
A0 ← max(IOU(B,B′), A0)
end

end
A← A+A0

end
return A

#validboundingboxes

the outer loop, we add the difference between each mask
to an overall counter. After the outer loop is done, we divide
the counter A by the number of masks, yielding the mean
difference according to IOU for the given image.

C. Unrelated Perturbation

The final objective aims to create perturbation unrelated to
the object or region of interest by maximizing the distance
between perturbation and object. If we can successfully iden-
tify unrelated perturbations, this implies that it is possible to
corrupt the segmentation process without directly modifying
the region of the image containing the corrupted object.

Algorithm 2 shows the pseudocode for the algorithm.
The inputs are a hyper parameter ϵ, the input image img,
the perturbation δ, and the segmentation function f . First,
the algorithm computes a matrix D with all entries D[i, j]
representing the minimum distance between pixel [i, j] from
the center of an image mask in the output f(img+δ). Since
image masks can come in many different shapes, and YOLO
and DETR both provide bounding boxes for objects, we take
the center of the bounding box as the reference point. Next,
we scan through each pixel in the image, assigning a negative
value in the matrix for each corresponding pixel that falls
within an image mask. The ϵ value acts as a buffer for the
image masks. ϵ is a hyper parameter in this algorithm we
use to specify a buffer around the image mask in which
perturbations are not selected. The goal of image masks
is to define the object boundary as precisely as possible,
whereas bounding boxes inherently contain a buffer between
the boundary and the actual object. We select a value of 1
empirically: most of the image masks we inspected require
a buffer of 1 pixel. However, in practice we could perform a
grid-search for the ideal value of ϵ. This allows us to ignore
the pixels near the image mask. Next we multiply each value
D[i, j] with the maximum intensity of the pixel at entry [i, j].
The maximum intensity is simply the maximum perturbation
value δ out of the three RGB channels of the pixel. This
allows us to favor noise in regions further from segmented
objects. The algorithm returns the sum of all the weighted
distances divided by the number of unperturbed pixels. This
provides a single value to represent the distance from all
objects of the noise added.

Algorithm 2 Maximize distance between object and pertur-
bation
D ← 0L∗W

while I in range L, J in range W do
D[i, j]←

√
length2 + width2

while B is a valid bounding box do
D[i, J ]← min(D[i, j],

√
(x− i)2 + (y − j)2)

end
end

negavg ← (−1)
∑

i,j D[i,j]

L∗W
while i in range L and j in range W do

while B is a valid bounding box do
if

i ∈ [x- l
2 + ϵ, x+ l

2 + ϵ] and j∈ [y-w2 + ϵ, y+ w
2 + ϵ]

then
end
D[i, j]← −negavg

end
end

δmax
abs ← 0L∗w

while i in range length and j in range width do
δmax
abs ← max(δ[i, j, 1], δ[i, j, 2], δ[i, j, 3])
D[i, j]← δmax

abs [i, j] ∗D[i, j]
end

unperturbed pixel count ←
∑

(i,j),suchthatδmax
abs [i,j ]̸=0 1

return
∑

i,j D[i,j]

unperturbed pixel count

IV. GENERATING PERTURBATIONS

To complete the multi-objective optimization search, we
use two different solvers to broaden the search for optimal
perturbations: NSGA-II [12] and AGE-MOEA [13]. NSGA-
II utilizes Pareto rank and crowding distance which help the
algorithm undergo Pareto sorting. AGE-MOEA is similar to
NSGA-II, with a different crowding distance formula.

For the noise applied to images, we use Gaussian noise and
apply a Gaussian filter mask to each RGB value in each pixel.
The filter mask used to perturb the images is represented with
a direct (or explicit) encoding. For the population size of the
genetic algorithm, we use 25 to limitations on computational
power and the complexity of our functions. We observe
empirically that 25 provides just enough of a population size
to encapsulate a good solution space while also keeping a
diverse solution set. In the package pymoo [14], we use the
default parameters for the crossover. One point crossover is
chosen on the pixel array and applied with a probability value
Pc = 0.5. Then offspring filters are created by random pixel
indexes. In regards to the mutation aspects, we treat pixels
as the genes and perform operations similar to [3], with a
probability Pm = 0.5, and a mutation window size of 0.01.

While we choose NSGA-II because of the diversified so-



lutions it discovers, it has been noted that it does not perform
well on complex problems, and its optimization ability tends
to settle on local optima rather than global optima [15]. It
has been shown that different algorithms perform worse on
different geometries. These geometries could be euclidean
but could also be spherical or a hyperbolic hyper surface.
AGE-MOEA utilizes a non-euclidean geometric approach
[13]. It has been shown that the AGE-MOEA algorithm
creates a more diverse solution space, because to be an ideal
solution in this algorithm means to contribute to the diversity
and proximity of the non-dominated front with regards to
the estimated geometry. Since this is also an evolutionary
algorithm, we decided to keep the parameters (mutation rate,
crossover probability, etc.) and encoding the same for both
solvers.

Figure 3 shows the results for the NSGA-II optimization
search for YOLOv8. The goal of this search is to minimize
the first two functions (f1) and (f2) and maximize (f3) We
observe that the search is successful: we can find perturba-
tions that achieve minimum value (0) for f1 and similar for
f2 and f3, meaning they affect the segmentation output. The
same observations hold for DETR (Figure 4).

Fig. 3. NSGA-II optimization search for YOLOv8. f1 goal is to minimize
the perturbation, f2 goal is to maximize the output error, and f3 goal is to
maximize the distance between the object and perturbation.

Fig. 4. NSGA-II optimization search for DETR. f1 goal is to minimize
the perturbation, f2 goal is to maximize the output error, and f3 goal is to
maximize the distance between the object and perturbation.

Fig. 5. AGE-MOEA optimization search for YOLOv8.

Fig. 6. AGE-MOEA optimization search for DETR.

Figures 5 and 6 show the AGE-MOEA optimization search
for YOLOv8 and DETR respectively. Again the search finds
undetectable perturbations that affect segmentation output.
We make two observations. First, the AGE-MOEA search
yields more outliers than NSGA-II. This is expected, as
AGE-MOEA is designed to prioritize diversity in the solution
space. Second, the runtime of NSGA-II is longer as it takes
O(MN2) while AGE-MOEA runtime is O(MN ), where M
is the number of objectives and N is the population size. This
was proved empirically as we saw that NSGA-II took about
the time AGE-MOEA took squared. This is even longer than
expected, as only the population size is squared in the time
complexity of NSGA-II. The extended time is expected as
NSGA-II is a more complex solver and our problem is very
complex. We conclude that AGE-MOEA is more effective
because it gives more diverse solutions (a bigger range of
effective noise) and has less runtime for the same population
and generation sizes.

V. PREDICTING PERTURBATIONS

After applying optimal perturbation to a variety of images,
we notice some images are not affected by the optimal
perturbation generated by the search. This leads us to ask
the following question: Could we predict if the segmentation
of an image would be affected by noise? We approach
this problem from a data-driven point of view. We create a



Fig. 7. Sample training image from KITTI dataset.

convolutional neural network (CNN) and train it on images
from different KITTI datasets (see Figure 7 for example),
and attempt to predict whether the segmenter’s output for a
certain image could be corrupted by noise, e.g., generated by
our optimal search. Rather than generate optimal noise for
each image in the dataset, which is impractical, we create
an optimal noise range, which we find empirically to be
effective across a large variety of images.

A. Definition of the Problem

We define a standard binary classifier CNN that will, given
an image of any size RL∗W∗3, output whether or not the
image will be corrupted by noise. To train the predictor, we
apply noise from our predefined range to a training image,
and run it through the target segmenter to test whether the
image will be corrupted. The noised applied is randomly
chosen from the range, which could prevent the predictor
from being able to generalize for a variety of perturbations
on the same input image. To mitigate this over-specialization
of the predictor CNN, we defined the noise range as the
union of all the solutions from both optimization algorithm
searches. We train three different predictor networks: (1)
with images from both segmenters, YOLO+DETR; (2) with
images only from YOLOv8 segementer, labeled YOLO-only;
(3) with images only from DETR segementer, DETR-only.

VI. EVALUATION

A. Experimental Setup

Figure 8 shows the network architecture for the predictor
CNN. We implement our neural network in TensorFlow and
create a standard convolution neural network. The input is
an image with perturbation applied that will be automatically
resized when run through the network. We start with a
standard convolution layer followed by a max pooling layer
and we repeat this two more times. Then we follow a
flatten layer and two dense layers. The activation function
is RELU, and the number of filters per convolution layer is
16. Following each convolution layer is a max pooling layer
to condense our input shape into half of what the original
image was. The last three layers ensure that we flatten our
final layer to a single dimension, passing it to a dense layer
for a prediction. We train this model on 20 epochs.

B. Results

We train the predictor networks on around 1500 images
in total from various datasets from KITTI. The test dataset
contains roughly 300 images. 100% accuracy was achieved

64 64 I

conv1

64 64 I/2

conv2

256 256 256 I/4

conv3 flatten

dense

dense

Fig. 8. Predictor CNN architecture

on our test dataset for YOLO+DETR. We select the test set
to be as representative of the training data as possible. Table
I shows the performance of each predictor CNN in terms of
accuracy, precision, and recall achieved for the test set. The
precision score is measured by TP

TP+FP , where TP are true
positives and FP are false positives. Recall is measured as

TP
TP+FN .

We make the following observations. First, the
YOLO+DETR CNN achieves 95% recall with 100%
precision, telling us that we can identify almost all images
with corrupted segmentation, without any false positives.
This is significant, as it means that we can detect corruption
due to noise, malicious or otherwise, without access to
the ground truth. Second, the YOLO-only CNN achieves
90% precision, while the DETR-only CNN achieved 94.7%
precision, and both achieve 100% recall. This tells us that
DETR is more susceptible to corruption due to noise than
YOLO. Furthermore, the noise that YOLO is susceptible to
is a subset of the noise DETR is susceptible to, allowing
the DETR-only CNN to generalize to YOLO segmentation.

The above evaluations are performed with similar training
and test images. We now evaluate the CNNs’ ability to
generalize to diverse environments using different KITTI
datasets. The first new dataset consists of dark images –
images with shadows overall and no direct sunlight (example
in Figure 9). All models perform poorly on these images
and are not able to generalize. The second new dataset
consists of images with more even lighting, but in a different
environment. The models are able to generalize well to
this environment, achieving 80% accuracy, 76% accuracy,
and 60% precision. The third new dataset contains bright
images from various camera angles, e.g., birds-eye view. The
models are unable to generalize for different camera angles,

TABLE I
PREDICTOR CNN PERFORMANCE

Network Precision Recall Accuracy
YOLO+DETR 100% 95.23% 98.4375%

YOLO-only 90% 100% 96.875 %
DETR-only 94.736844% 100% 96.875%



Fig. 9. False positive: the predictor CNN identified the image as corrupted
by noise, when in reality it was not. The contributing factor to the incorrect
prediction was the sunlight present in the image.

achieving 53% precision, 31% recall and 51% accuracy.

VII. CONCLUSION AND FUTURE OUTLOOK

In this work, we measured the susceptibility of popular
object segmentation neural networks YOLOv8 and DETR to
input image perturbations. We observed that it is possible
to affect the segmentation output of an object in an image
by inserting noise undetectable by the human eye into the
input image, in regions of the image far from the target
object. We also designed and trained a convolutional neural
network to detect whether an image will yield corrupt
outputs, i.e., incorrect segmentation results. This effectively
reverse-engineers the perturbation process, detecting prob-
lematic perturbation in input images before they are even
run through the segmentation network. We observed that it
is possible to predict the corruption, but the CNN predictor
does not generalize well to diverse inputs, e.g., different
lighting conditions or unknown environments. We believe the
predictor CNN is highly dependent on both hyper-parameters
and training data, meaning generalization can be improved
empirically through training data and parameter tuning. The
prediction method can be effective for consistent autonomy
environments, e.g., a pick and place robot operating in a
small warehouse region, or an autonomous train traveling
the same tracks. A binary classifier for perturbation detection
could be executed in parallel alongside early stages of a
standard computer vision pipeline, e.g., object detection,
in order to determine confidence or validity of outputs of
downstream stages.

One interesting alternative to a CNN classifier that could
address the shortcomings due to limited training data is a
support vector machine approach. We did attempt to create
a support vector machine and we found that the support
vector machine achieved a 68% accuracy on the test dataset.
We assume this low value is due to SVMs inability to
scale well when the ratio of features per data point is very
large. We chose to use a CNN because of the complexity
of the problem: the environmental conditions of the images
can vary highly, and CNNs are superior in complex pattern
recognition compared to vector machines. However, the CNN
proved to be sensitive to environmental variability as well,
so a vector machine may prove superior for constrained
environments with limited training data. We plan to explore
this in future work.
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